login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106517 Convolution of Fibonacci(n-1) and 3^n. 4
1, 3, 10, 31, 95, 288, 869, 2615, 7858, 23595, 70819, 212512, 637625, 1913019, 5739290, 17218247, 51655351, 154967040, 464902717, 1394710735, 4184136386, 12552415923, 37657258715, 112971793856, 338915410225, 1016746277043 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-2,-3).

FORMULA

G.f.: (1-x)/((1-x-x^2)*(1-3*x)).

a(n) = Sum_{k=0..n} Fibonacci(n-k-1) * 3^k.

a(n) = A101220(2, 3, n+1). - Ross La Haye, Jul 25 2005

a(n) = A101220(3, 3, n+1) - A101220(3, 3, n). - Ross La Haye, May 31 2006

a(n) = (1/5)*(6*3^n - Lucas(n+1)). - Ralf Stephan, Nov 16 2010

Sum_{k=0..n} a(k) = A094688(n+1). - G. C. Greubel, Aug 05 2021

MATHEMATICA

LinearRecurrence[{4, -2, -3}, {1, 3, 10}, 30] (* Harvey P. Dale, Oct 08 2014 *)

PROG

(Magma) I:=[1, 3, 10]; [n le 3 select I[n] else 4*Self(n-1) -2*Self(n-2) -3*Self(n-3): n in [1..41]]; // G. C. Greubel, Aug 05 2021

(Sage) [(2*3^(n+1) - lucas_number2(n+1, 1, -1))/5 for n in (0..40)] # G. C. Greubel, Aug 05 2021

(PARI) a(n) = sum(k=0, n, fibonacci(n-k-1) * 3^k); \\ Michel Marcus, Aug 06 2021

CROSSREFS

Cf. A000032, A000045, A000244, A094688, A101220.

Diagonal sums of number triangle A106516.

Sequence in context: A180432 A237930 A192337 * A055217 A097472 A068094

Adjacent sequences:  A106514 A106515 A106516 * A106518 A106519 A106520

KEYWORD

easy,nonn

AUTHOR

Paul Barry, May 05 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 22:49 EDT 2022. Contains 356949 sequences. (Running on oeis4.)