This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A106472 Expansion of (1 - x)^2*(1 + x) / (1 - 2*x)^2. 3
 1, 3, 7, 17, 40, 92, 208, 464, 1024, 2240, 4864, 10496, 22528, 48128, 102400, 217088, 458752, 966656, 2031616, 4259840, 8912896, 18612224, 38797312, 80740352, 167772160, 348127232, 721420288, 1493172224, 3087007744, 6375342080, 13153337344, 27111981056 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Binomial transform of A029578(n+2). Row sums of number triangle A106471. a(n) is the number of parts equal to 1 or 2 in all the compositions of n + 1. Example: a(2)=7 because in the compositions [3], [1,2], [2,1], and [1,1,1] we have 0 + 2 + 2 + 3 = 7 parts equal to 1 or 2. Equivalently, a(n) = Sum_{k>=0} k*A296559(n+1,k). - Emeric Deutsch Dec 16 2017 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4,-4). FORMULA G.f.: (1 - x)^2*(1 + x) / (1 - 2*x)^2. a(0)=1, a(1)=3, and a(n) = (3*n + 8)*2^(n-3), for n>=2. [simplified by Ralf Stephan, Nov 16 2010] a(n) = 4*a(n-1) - 4*a(n-2) for n > 3. - Colin Barker, Dec 16 2017 MAPLE 1, 3, seq((3*n+8)*2^(n-3), n = 2 .. 27); # Emeric Deutsch Dec 16 2017 MATHEMATICA Join[{1, 3}, LinearRecurrence[{4, -4}, {7, 17}, 30]] (* Jean-François Alcover, Dec 16 2017 *) PROG (PARI) x='x+O('x^99); Vec((1+x)*(1-x)^2/(1-2*x)^2) \\ Altug Alkan, Dec 16 2017 CROSSREFS Cf. A029578, A106471, A296559. Sequence in context: A005197 A147142 A298371 * A036885 A247300 A137682 Adjacent sequences:  A106469 A106470 A106471 * A106473 A106474 A106475 KEYWORD easy,nonn AUTHOR Paul Barry, May 03 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 21 02:02 EDT 2019. Contains 325189 sequences. (Running on oeis4.)