login
a(n) = binomial(2n+4,n)*binomial(n+4,4).
1

%I #20 Aug 19 2021 01:02:12

%S 1,30,420,4200,34650,252252,1681680,10501920,62355150,355655300,

%T 1963217256,10546208400,55367594100,285028443000,1442592936000,

%U 7193730107520,35406640372950,172255143129300,829376615067000

%N a(n) = binomial(2n+4,n)*binomial(n+4,4).

%C Fifth column of A104684.

%H Michael De Vlieger, <a href="/A106440/b106440.txt">Table of n, a(n) for n = 0..1642</a>

%H Ömür Deveci and Anthony G. Shannon, <a href="https://doi.org/10.20948/mathmontis-2021-50-4">Some aspects of Neyman triangles and Delannoy arrays</a>, Mathematica Montisnigri (2021) Vol. L, 36-43.

%F G.f.: (1+12x+6x^2)/(1-4x)^(9/2).

%F D-finite with recurrence n^2*a(n) -2*(n+2)*(2*n+3)*a(n-1)=0. - _R. J. Mathar_, Feb 20 2015

%F G.f.: 2F1(5/2,3;1;4x). - _R. J. Mathar_, Aug 09 2015

%F a(n) = A020920(n)+12*A020920(n-1)+6*A020920(n-2). - _R. J. Mathar_, Aug 09 2015

%F a(n) = (n+1)*A002803(n). - _R. J. Mathar_, Aug 09 2015

%t Table[Binomial[2n+4,n]Binomial[n+4,4],{n,0,20}] (* _Harvey P. Dale_, May 03 2019 *)

%Y Cf. A007744, A002544, A002457.

%Y Cf. A002803, A020920.

%K easy,nonn

%O 0,2

%A _Paul Barry_, May 02 2005