login
Weight distribution of [113,57,15] binary quadratic-residue (or QR) code.
0

%I #16 Nov 08 2017 22:15:33

%S 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3616,22148,0,0,79100,371770,539462,

%T 2255932,7723324,28962465,106963766,362031208,1164652580,3577147210,

%U 10584922440,29637782832,79257402672,203097094347,498291292415

%N Weight distribution of [113,57,15] binary quadratic-residue (or QR) code.

%C Taken from the Tjhai-Tomlinson web site.

%C According to Boston and Hao, the Tjhai-Tomlinson tables give erroneous values for a(56) and a(57). The current version (v1) of their paper, however, contains an erroneous correction. - _Eric M. Schmidt_, Nov 08 2017

%H Nigel Boston and Jing Hao, <a href="https://arxiv.org/abs/1705.06413">The Weight Distribution of Quasi-quadratic Residue Codes</a>, arXiv:1705.06413 [cs.IT], 2017.

%H C. J. Tjhai and Martin Tomlinson, <a href="http://www.tech.plym.ac.uk/Research/fixed_and_mobile_communications/links/weightdistributions.htm"> Weight Distributions of Quadratic Residue and Quadratic Double Circulant Codes over GF(2)</a> [dead link]

%e The weight distribution is:

%e i A_i

%e 0 1

%e 15 3616

%e 16 22148

%e 19 79100

%e 20 371770

%e 21 539462

%e 22 2255932

%e 23 7723324

%e 24 28962465

%e 25 106963766

%e 26 362031208

%e 27 1164652580

%e 28 3577147210

%e 29 10584922440

%e 30 29637782832

%e 31 79257402672

%e 32 203097094347

%e 33 498291292415

%e 34 1172450099800

%e 35 2645916266148

%e 36 5732818576654

%e 37 11930503538968

%e 38 23861007077936

%e 39 45892063616140

%e 40 84900317689859

%e 41 151162931905769

%e 42 259136454695604

%e 43 427856747425184

%e 44 680681189085520

%e 45 1043718121981906

%e 46 1542887658581948

%e 47 2199475409482456

%e 48 3024278688038377

%e 49 4011781195731400

%e 50 5135079930536192

%e 51 6343283392924660

%e 52 7563145583871710

%e 53 8704767791530440

%e 54 9671964212811600

%e 55 10375431209297308

%e 56 10745982323915069

%e 57 10745982323915069

%e 58 10375431209297308

%e 59 9671964212811600

%e 60 8704767791530440

%e 61 7563145583871710

%e 62 6343283392924660

%e 63 5135079930536192

%e 64 4011781195731400

%e 65 3024278688038377

%e 66 2199475409482456

%e 67 1542887658581948

%e 68 1043718121981906

%e 69 680681189085520

%e 70 427856747425184

%e 71 259136454695604

%e 72 151162931905769

%e 73 84900317689859

%e 74 45892063616140

%e 75 23861007077936

%e 76 11930503538968

%e 77 5732818576654

%e 78 2645916266148

%e 79 1172450099800

%e 80 498291292415

%e 81 203097094347

%e 82 79257402672

%e 83 29637782832

%e 84 10584922440

%e 85 3577147210

%e 86 1164652580

%e 87 362031208

%e 88 106963766

%e 89 28962465

%e 90 7723324

%e 91 2255932

%e 92 539462

%e 93 371770

%e 94 79100

%e 97 22148

%e 98 3616

%e 113 1

%K nonn,fini

%O 0,16

%A _N. J. A. Sloane_, Apr 11 2009

%E In accordance with Boston and Hao, a(56) and a(57) corrected by _Eric M. Schmidt_, Nov 08 2017