login
A106390
Numbers k such that 13k = 6j^2 + 6j + 1.
3
1, 61, 97, 277, 349, 649, 757, 1177, 1321, 1861, 2041, 2701, 2917, 3697, 3949, 4849, 5137, 6157, 6481, 7621, 7981, 9241, 9637, 11017, 11449, 12949, 13417, 15037, 15541, 17281, 17821, 19681, 20257, 22237, 22849, 24949, 25597, 27817, 28501, 30841
OFFSET
1,2
FORMULA
a(1)=1, a(2)=61; for odd n a(n) = a(n-1)+18*(n-1), for even n a(n) = a(n-1)+60*(n-1).
a(n) = (25-21*(-1)^n+6*(-13+7*(-1)^n)*n+78*n^2)/4. - Colin Barker, Apr 16 2014
G.f.: -x*(x^4+60*x^3+34*x^2+60*x+1) / ((x-1)^3*(x+1)^2). - Colin Barker, Apr 16 2014
MATHEMATICA
f[n_] := Block[{k = (6n(n + 1) + 1)/13}, If[ IntegerQ[k], k, 1]]; Union[ Table[ f[n], {n, 270}]] (* Robert G. Wilson v, May 02 2005 *)
PROG
(PARI) Vec(-x*(x^4+60*x^3+34*x^2+60*x+1)/((x-1)^3*(x+1)^2) + O(x^100)) \\ Colin Barker, Apr 16 2014
CROSSREFS
For j sequence see A106389.
Sequence in context: A020350 A142108 A033239 * A142191 A086126 A023287
KEYWORD
nonn,easy
AUTHOR
Pierre CAMI, May 01 2005
EXTENSIONS
More terms from Robert G. Wilson v, May 02 2005
STATUS
approved