

A106297


Period of the Lucas 5step sequence A074048 mod n.


3



1, 1, 104, 6, 781, 104, 2801, 12, 312, 781, 16105, 312, 30941, 2801, 81224, 24, 88741, 312, 13032, 4686, 291304, 16105, 12166, 312, 3905, 30941, 936, 16806, 70728, 81224, 190861, 48, 1674920, 88741, 2187581, 312, 1926221, 13032, 3217864, 9372, 2896405
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

This sequence differs from the corresponding Fibonacci sequence (A106303) at all n that are multiples of 2 or 599 because 9584 is the discriminant of the characteristic polynomial x^5x^4x^3x^2x1 and the prime factors of 9584 are 2 and 599.


LINKS

Table of n, a(n) for n=1..41.
Eric Weisstein's World of Mathematics, Fibonacci nStep


FORMULA

Let the prime factorization of n be p1^e1...pk^ek. Then a(n) = lcm(a(p1^e1), ..., a(pk^ek)).


MATHEMATICA

n=5; Table[p=i; a=Join[Table[ 1, {n1}], {n}]; a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 50}]


CROSSREFS

Cf. A106303 (period of Fibonacci 5step sequence mod n), A106273 (discriminant of the polynomial x^nx^(n1)...x1).
Sequence in context: A088584 A238490 A097014 * A090849 A091025 A054904
Adjacent sequences: A106294 A106295 A106296 * A106298 A106299 A106300


KEYWORD

nonn


AUTHOR

T. D. Noe, May 02 2005, Nov 19 2006


STATUS

approved



