The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A106295 Period of the Lucas 4-step sequence A073817 mod n. 5
 1, 5, 26, 10, 312, 130, 342, 20, 78, 1560, 120, 130, 84, 1710, 312, 40, 4912, 390, 6858, 1560, 4446, 120, 12166, 260, 1560, 420, 234, 1710, 280, 1560, 61568, 80, 1560, 24560, 17784, 390, 1368, 34290, 1092, 1560, 240, 22230, 162800, 120, 312, 60830, 103822 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This sequence is the same as the period of Fibonacci 4-step sequence (A000078) mod n for n<563 because the discriminant of the characteristic polynomial x^4-x^3-x^2-x-1 is -563. The two sequences differ only at n that are multiples of 563. LINKS Eric Weisstein's World of Mathematics, Fibonacci n-Step FORMULA Let the prime factorization of n be p1^e1...pk^ek. Then a(n) = lcm(a(p1^e1), ..., a(pk^ek)). MATHEMATICA n=4; Table[p=i; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 60}] CROSSREFS Cf. A106273 (discriminant of the polynomial x^n-x^(n-1)-...-x-1). Sequence in context: A137113 A137115 A060063 * A057688 A259207 A300005 Adjacent sequences:  A106292 A106293 A106294 * A106296 A106297 A106298 KEYWORD nonn AUTHOR T. D. Noe, May 02 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 14:07 EDT 2021. Contains 343154 sequences. (Running on oeis4.)