login
A106292
Period of the Lucas sequence A000032 mod prime(n).
0
3, 8, 4, 16, 10, 28, 36, 18, 48, 14, 30, 76, 40, 88, 32, 108, 58, 60, 136, 70, 148, 78, 168, 44, 196, 50, 208, 72, 108, 76, 256, 130, 276, 46, 148, 50, 316, 328, 336, 348, 178, 90, 190, 388, 396, 22, 42, 448, 456, 114, 52, 238, 240, 250, 516, 176, 268, 270, 556, 56
OFFSET
1,1
COMMENTS
This sequence differs from A060305 at only one position: 3, which corresponds to the prime 5, which is the discriminant of the characteristic polynomial x^2-x-1. We have a(n) < prime(n) for the primes in A038872.
LINKS
Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
FORMULA
a(n) = A106291(prime(n)).
MATHEMATICA
n=2; Table[p=Prime[i]; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 70}]
CROSSREFS
Cf. A060305 (period of Fibonacci numbers mod prime(n)), A106273 (discriminant of the polynomial x^n-x^(n-1)-...-x-1), A106291.
Sequence in context: A212886 A127438 A303217 * A336884 A072247 A051359
KEYWORD
nonn
AUTHOR
T. D. Noe, May 02 2005
STATUS
approved