login
A106184
Expansion of 1/sqrt(1-4*x-8*x^2+32*x^3).
2
1, 2, 10, 28, 118, 380, 1508, 5240, 20326, 73836, 284396, 1061128, 4085820, 15500120, 59820040, 229366768, 887943046, 3428967500, 13315684764, 51678099304, 201246353492, 783890932488, 3060144292600, 11953056489104
OFFSET
0,2
COMMENTS
In general, a(n)=sum{k=0..floor(n/2), C(2k,k)C(2(n-2k),n-2k)*r^k} has g.f. 1/sqrt(1-4x-4r*x^2+16r*x^3).
Gould's sequence (A001316) divides a. [g|a <=> g(n)|a(n) for all n]. A268433 is the termwise quotient. - Peter Luschny, Feb 24 2016
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} C(2*k, k)*C(2(n-2*k), n-2*k)*2^k.
D-finite with recurrence: n*a(n)+2*(1-2*n)*a(n-1)+8*(1-n)*a(n-2)+16*(2*n-3)*a(n-3) = 0. - R. J. Mathar, Dec 08 2011
a(n) ~ 2^(2*n+1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 17 2012
G.f. g(x) satisfies (4*x-1)*(8*x^2-1)*g'(x) + (48*x^2-8*x-2)*g(x) = 0, from which Mathar's recurrence can be derived. - Robert Israel, Feb 23 2016
a(n) = C(2*n,n)*hypergeom([1/2,-n/2,-n/2+1/2],[-n/2+3/4,-n/2+1/4],1/2). - Peter Luschny, Feb 23 2016
MAPLE
S:= series(1/sqrt(1-4*x-8*x^2+32*x^3), x, 101):
seq(coeff(S, x, j), j=0..100); # Robert Israel, Feb 23 2016
MATHEMATICA
CoefficientList[Series[1/Sqrt[1-4x-8x^2+32x^3], {x, 0, 30}], x] (* Harvey P. Dale, Sep 15 2011 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Apr 24 2005
STATUS
approved