login
A106169
Number of inequivalent codes attaining highest minimal Hamming distance of any Type (4_II)^H+ even Hermitian additive self-dual code over GF(4) of length 2n.
0
1, 2, 1, 3, 19, 1, 1020
OFFSET
1,2
COMMENTS
The minimal distance of these codes is (so far) 2,2,4,4,4,6.
LINKS
C. Bachoc and P. Gaborit, On extremal additive F_4 codes of length 10 to 18, in International Workshop on Coding and Cryptography (Paris, 2001), Electron. Notes Discrete Math. 6 (2001), 10 pp.
A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), arXiv:quant-ph/9608006, 1996-1997; IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.
P. Gaborit, W. C. Huffman, J.-L. Kim and V. S. Pless, On additive GF(4) codes, in Codes and Association Schemes (Piscataway, NJ, 1999), A. Barg and S. Litsyn, eds., Amer. Math. Soc., Providence, RI, 2001, pp. 135-149.
G. Hoehn, Self-dual codes over the Kleinian four-group, Math. Ann. 327 (2003), 227-255.
W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic., 11 (2005), 451-490.
W. C. Huffman, Additive self-dual codes over F_4 with an automorphism of odd prime order, Adv. Math. Commun., 1 (2007), 357-398.
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
KEYWORD
nonn,hard,more
AUTHOR
N. J. A. Sloane, May 09 2005
STATUS
approved