This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A106157 G.f. (1-x-x^3+x^4-2*x^2)/((1-2*x)*(x-1)^2*(x+1)^2). 1
 -1, -1, -2, -1, -2, 1, 2, 11, 22, 53, 106, 223, 446, 905, 1810, 3635, 7270, 14557, 29114, 58247, 116494, 233009, 466018, 932059, 1864118, 3728261, 7456522, 14913071, 29826142, 59652313, 119304626, 238609283, 477218566, 954437165, 1908874330, 3817748695, 7635497390, 15270994817 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The sequence reveals itself to a degree upon factorization: (-1, -1, -(2), -1, -(2), 1, (2), (11), (2)*(11), (53), (2)*(53), (223), (2)*(223), (5)*(181), (2)*(5)*(181), (5)*(727), (2)*(5)*(727), (14557), (2)*(14557), (7)*(53)*(157), (2)*(7)*(53)*(157), (7)*(33287), (2)*(7)*(33287), (17)*(109)*(503), (2)*(17)*(109)*(503), (1429)*(2609), (2)*(1429)*(2609), (97)*(153743), (2)*(97)*(153743), (7)*(8521759),) with a(n+1)/a(n) apparently approaching 2 and a(2n)/a(2n-1) = 2 for all n > 0. LINKS Index entries for linear recurrences with constant coefficients, signature (2,2,-4,-1,2). FORMULA (1/18)[(2^(n+1) - (3n+2)(-1)^n - 9n - 18]. PROG Floretion Algebra Multiplication Program, FAMP Code: 1vesrokseq[A*B] with A = + 'ii' + .5'jj' + .5'kk' + .5'ij' + .5'ik' + .5'ji' + 'jk' + .5'ki' + 'kj', B = + .25'i + .25i' + .25'ii' + .25'jj' + .25'kk' + .25'jk' + .25'kj' + .25e and RokType: Y[15] = Y[15] - p (internal program code) CROSSREFS Sequence in context: A059913 A083273 A193163 * A181816 A113738 A287854 Adjacent sequences:  A106154 A106155 A106156 * A106158 A106159 A106160 KEYWORD sign,easy AUTHOR Creighton Dement, May 08 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.