This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A106154 Generation 5 of the substitution 1->{2, 1, 2}, 2->{3, 2, 3}, 3->{4, 3, 4}, 4->{5, 4, 5}, 5->{6, 5, 6}, 6->{1, 6, 1}, starting with 1. 0
 6, 5, 6, 5, 4, 5, 6, 5, 6, 5, 4, 5, 4, 3, 4, 5, 4, 5, 6, 5, 6, 5, 4, 5, 6, 5, 6, 5, 4, 5, 4, 3, 4, 5, 4, 5, 4, 3, 4, 3, 2, 3, 4, 3, 4, 5, 4, 5, 4, 3, 4, 5, 4, 5, 6, 5, 6, 5, 4, 5, 6, 5, 6, 5, 4, 5, 4, 3, 4, 5, 4, 5, 6, 5, 6, 5, 4, 5, 6, 5, 6, 5, 4, 5, 4, 3, 4, 5, 4, 5, 4, 3, 4, 3, 2, 3, 4, 3, 4, 5, 4, 5, 4, 3, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Previous name was: Terdragon matrix symmetry extended to 6 symbols: characteristic polynomial: x^6 - 6*x^5 + 15*x^4 - 20*x^3 + 15*x^2 - 6*x - 63. This sequence gives a segment of a 120-degree hexagonal border for a tile. LINKS F. M. Dekking, Recurrent Sets, Advances in Mathematics, vol. 44, no.1, April 1982, page 96, section 4.11. FORMULA 1->{2, 1, 2}, 2->{3, 2, 3}, 3->{4, 3, 4}, 4->{5, 4, 5}, 5->{6, 5, 6}, 6->{1, 6, 1}. MATHEMATICA s[1] = {2, 1, 2}; s[2] = {3, 2, 3}; s[3] = {4, 3, 4}; s[4] = {5, 4, 5}; s[5] = {6, 5, 6}; s[6] = {1, 6, 1}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]]; aa = p[5] Flatten[Nest[Flatten[#/.{1->{2, 1, 2}, 2->{3, 2, 3}, 3->{4, 3, 4}, 4->{5, 4, 5}, 5->{6, 5, 6}, 6->{1, 6, 1}} &], {5}, 7]] (* Vincenzo Librandi, Jun 17 2015 *) CROSSREFS Cf. A105969. Sequence in context: A064844 A242723 A111718 * A023408 A133616 A019621 Adjacent sequences:  A106151 A106152 A106153 * A106155 A106156 A106157 KEYWORD nonn,fini,uned AUTHOR Roger L. Bagula, May 07 2005 EXTENSIONS New name from Joerg Arndt, Jun 17 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 14:29 EDT 2019. Contains 324325 sequences. (Running on oeis4.)