login
A106117
Substitution sequence that simulates a three level two state neural net in six symbols : Fibonacci-Silver Chain-Fibonacci.
0
3, 5, 6, 5, 1, 1, 2, 1, 3, 3, 3, 4, 3, 5, 6, 5, 5, 6, 5, 5, 6, 5, 5, 5, 6, 5, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 3, 5, 6, 5, 5, 6, 5, 5, 6, 5, 5, 5, 6, 5, 5, 6, 5, 5, 6, 5, 5, 6, 5, 5, 5, 6, 5, 5, 6, 5, 5, 6, 5, 5, 6, 5, 5, 5, 6, 5, 5, 6
OFFSET
0,1
COMMENTS
It is a triangular level, two state each, state machine: {1,2},{3,4},{5,6} I show all three levels. Projection on an hexagon: bb=aa/. 1->{0.5, 0.8660254037844386}/. 2->{0.5,-0.8660254037844386}/. 3->{1,0} /. 4 ->{0.5,0.8660254037844386}/. 5->{0.5,-0.8660254037844386}/. 6->{1,0}; ListPlot[FoldList[Plus, {0, 0}, bb], PlotJoined -> True, PlotRange -> All, Axes -> False];
FORMULA
1->{3}, 2->{3, 4}, 3->{5, 6, 5}, 4->{5}, 5->{1}, 6->{1, 2}
MATHEMATICA
s[1] = {3}; s[2] = {3, 4}; s[3] = {5, 6, 5}; s[4] = {5}; s[5] = {1}; s[6] = {1, 2}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = Flatten[Table[p[i], {i, 1, 8}]]
CROSSREFS
Sequence in context: A091517 A356376 A356380 * A081498 A110279 A161435
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, May 07 2005
STATUS
approved