

A106109


Let S_0 = {1}; let S_n be the image of S_{n1} under the morphism 1>{3}, 2>{3, 4}, 3>{6, 5, 6}, 4>{6, 6, 6}, 5>{1}, 6>{1, 2}; sequence gives the concatenation S_0, S_1, S_2, ...


0



1, 3, 6, 5, 6, 1, 2, 1, 1, 2, 3, 3, 4, 3, 3, 3, 4, 6, 5, 6, 6, 5, 6, 6, 6, 6, 6, 5, 6, 6, 5, 6, 6, 5, 6, 6, 6, 6, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 3, 3, 4, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 3, 4, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

This simulates a threelevel twostate neural net on six symbols: FibonacciCantorFibonacci.


LINKS

Table of n, a(n) for n=0..105.


FORMULA

1>{3}, 2>{3, 4}, 3>{6, 5, 6}, 4>{6, 6, 6}, 5>{1}, 6>{1, 2}


MATHEMATICA

s[1] = {3}; s[2] = {3, 4}; s[3] = {6, 5, 6}; s[4] = {6, 6, 6}; s[5] = {1}; s[6] = {1, 2}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n  1]] aa = Flatten[Table[p[i], {i, 1, 8}]]


CROSSREFS

Sequence in context: A102370 A268981 A245652 * A275925 A247581 A175650
Adjacent sequences: A106106 A106107 A106108 * A106110 A106111 A106112


KEYWORD

nonn,tabf


AUTHOR

Roger L. Bagula, May 07 2005


EXTENSIONS

Edited by N. J. A. Sloane, Aug 23 2007


STATUS

approved



