This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A106109 Let S_0 = {1}; let S_n be the image of S_{n-1} under the morphism 1->{3}, 2->{3, 4}, 3->{6, 5, 6}, 4->{6, 6, 6}, 5->{1}, 6->{1, 2}; sequence gives the concatenation S_0, S_1, S_2, ... 0
 1, 3, 6, 5, 6, 1, 2, 1, 1, 2, 3, 3, 4, 3, 3, 3, 4, 6, 5, 6, 6, 5, 6, 6, 6, 6, 6, 5, 6, 6, 5, 6, 6, 5, 6, 6, 6, 6, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 3, 3, 4, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 3, 4, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This simulates a three-level two-state neural net on six symbols: Fibonacci-Cantor-Fibonacci. LINKS FORMULA 1->{3}, 2->{3, 4}, 3->{6, 5, 6}, 4->{6, 6, 6}, 5->{1}, 6->{1, 2} MATHEMATICA s[1] = {3}; s[2] = {3, 4}; s[3] = {6, 5, 6}; s[4] = {6, 6, 6}; s[5] = {1}; s[6] = {1, 2}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = Flatten[Table[p[i], {i, 1, 8}]] CROSSREFS Sequence in context: A102370 A268981 A245652 * A275925 A282581 A247581 Adjacent sequences:  A106106 A106107 A106108 * A106110 A106111 A106112 KEYWORD nonn,tabf AUTHOR Roger L. Bagula, May 07 2005 EXTENSIONS Edited by N. J. A. Sloane, Aug 23 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.