login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106108 Rowland's prime-generating sequence: a(1) = 7; for n >1, a(n) = a(n-1) + gcd(n, a(n-1)). 45

%I

%S 7,8,9,10,15,18,19,20,21,22,33,36,37,38,39,40,41,42,43,44,45,46,69,72,

%T 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,

%U 141,144,145,150,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168

%N Rowland's prime-generating sequence: a(1) = 7; for n >1, a(n) = a(n-1) + gcd(n, a(n-1)).

%C The title refers to the sequence of first differences, A132199.

%C Setting a(1) = 4 gives A084662.

%C Rowland proves that the first differences are all 1's or primes. The prime differences form A137613.

%C See A137613 for additional comments, links and references. [From _Jonathan Sondow_, Aug 14 2008]

%C "This recurrence was discovered at the 2003 NKS Summer School by a group led by Matt Frank. This Demonstration allows initial conditions . a(1) >= 4. For 1 =< a(1) =< 3, a(n) - a(n-1) is 1 for n >= 3." See Wolfram hyperlink. [From _Robert G. Wilson v_, Sep 10 2008]

%D Eric S. Rowland, A simple prime-generating recurrence, Abstracts Amer. Math. Soc., 29 (No. 1, 2008), p. 50 (Abstract 1035-11-986).

%H T. D. Noe, <a href="/A106108/b106108.txt">Table of n, a(n) for n=1..1000</a>

%H Fernando Chamizo, Dulcinea Raboso and Serafin Ruiz-Cabello, <a href="http://www.combinatorics.org/Volume_18/Abstracts/v18i2p10.html">On Rowland's sequence</a>, Electronic J. Combin., Vol. 18(2), 2011, #P10.

%H Eric S. Rowland, <a href="http://arXiv.org/abs/0710.3217">A simple prime-generating recurrence</a>.

%H Eric S. Rowland, <a href="http://demonstrations.wolfram.com/PrimeGeneratingRecurrence/"> Prime-Generating Recurrence</a>, Wolfram Demonstrations Project. [From _Robert G. Wilson v_, Sep 10 2008]

%p S:=7; f:= proc(n) option remember; global S; if n=1 then RETURN(S); else RETURN(f(n-1)+gcd(n,f(n-1))); fi; end; [seq(f(n),n=1..200)];

%t a[1] = 7; a[n_] := a[n] = a[n - 1] + GCD[n, a[n - 1]]; Array[a, 66] (* From _Robert G. Wilson v_, Sep 10 2008 *)

%o (PARI) a=vector(100);a[1]=7;for(n=2,#a,a[n]=a[n-1]+gcd(n,a[n-1]));a \\ _Charles R Greathouse IV_, Jul 15 2011

%o (Haskell)

%o a106108 n = a106108_list !! (n-1)

%o a106108_list =

%o 7 : zipWith (+) a106108_list (zipWith gcd a106108_list [2..])

%o -- _Reinhard Zumkeller_, Nov 15 2013

%Y Cf. A084662, A084663, A132199, A134734, A134736, A134743, A134744, A134162, A137613, A221869.

%Y Cf. A230504.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Jan 28 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 28 10:55 EST 2014. Contains 250323 sequences.