login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106108 Rowland's prime-generating sequence: a(1) = 7; for n >1, a(n) = a(n-1) + gcd(n, a(n-1)). 57

%I

%S 7,8,9,10,15,18,19,20,21,22,33,36,37,38,39,40,41,42,43,44,45,46,69,72,

%T 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,

%U 141,144,145,150,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168

%N Rowland's prime-generating sequence: a(1) = 7; for n >1, a(n) = a(n-1) + gcd(n, a(n-1)).

%C The title refers to the sequence of first differences, A132199.

%C Setting a(1) = 4 gives A084662.

%C Rowland proves that the first differences are all 1's or primes. The prime differences form A137613.

%C See A137613 for additional comments, links and references. - _Jonathan Sondow_, Aug 14 2008

%C "This recurrence was discovered at the 2003 NKS Summer School by a group led by Matt Frank. This Demonstration allows initial conditions. a(1) >= 4. For 1 =< a(1) =< 3, a(n) - a(n-1) is 1 for n >= 3." See Wolfram hyperlink. - _Robert G. Wilson v_, Sep 10 2008

%C Not all starting values generate differences of all 1's or primes. The following a(1) generate composite differences: 532, 533, 534, 535, 698, 699, 706, 707, 708, 709, 712, 713, 714, 715, ... - _Dmitry Kamenetsky_, Jul 18 2015

%D Eric S. Rowland, A simple prime-generating recurrence, Abstracts Amer. Math. Soc., 29 (No. 1, 2008), p. 50 (Abstract 1035-11-986).

%H T. D. Noe, <a href="/A106108/b106108.txt">Table of n, a(n) for n = 1..1000</a>

%H Fernando Chamizo, Dulcinea Raboso and Serafin Ruiz-Cabello, <a href="http://www.combinatorics.org/Volume_18/Abstracts/v18i2p10.html">On Rowland's sequence</a>, Electronic J. Combin., Vol. 18(2), 2011, #P10.

%H Eric S. Rowland, <a href="http://arXiv.org/abs/0710.3217">A simple prime-generating recurrence</a>, arXiv:0710.3217 [math.NT], 2007-2008.

%H Eric S. Rowland, <a href="http://demonstrations.wolfram.com/PrimeGeneratingRecurrence/"> Prime-Generating Recurrence</a>, Wolfram Demonstrations Project. - _Robert G. Wilson v_, Sep 10 2008

%p S:=7; f:= proc(n) option remember; global S; if n=1 then RETURN(S); else RETURN(f(n-1)+gcd(n,f(n-1))); fi; end; [seq(f(n),n=1..200)];

%t a[1] = 7; a[n_] := a[n] = a[n - 1] + GCD[n, a[n - 1]]; Array[a, 66] (* _Robert G. Wilson v_, Sep 10 2008 *)

%o (PARI) a=vector(100);a[1]=7;for(n=2,#a,a[n]=a[n-1]+gcd(n,a[n-1]));a \\ _Charles R Greathouse IV_, Jul 15 2011

%o (Haskell)

%o a106108 n = a106108_list !! (n-1)

%o a106108_list =

%o 7 : zipWith (+) a106108_list (zipWith gcd a106108_list [2..])

%o -- _Reinhard Zumkeller_, Nov 15 2013

%o (MAGMA) [n le 1 select 7 else Self(n-1) + Gcd(n, Self(n-1)): n in [1..70]]; // _Vincenzo Librandi_, Jul 19 2015

%Y Cf. A084662, A084663, A132199, A134734, A134736, A134743, A134744, A134162, A137613, A221869.

%Y Cf. A230504.

%K nonn,changed

%O 1,1

%A _N. J. A. Sloane_, Jan 28 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 28 22:18 EDT 2015. Contains 261164 sequences.