login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106108 Rowland's prime-generating sequence: a(1) = 7; for n > 1, a(n) = a(n-1) + gcd(n, a(n-1)). 60

%I

%S 7,8,9,10,15,18,19,20,21,22,33,36,37,38,39,40,41,42,43,44,45,46,69,72,

%T 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,

%U 141,144,145,150,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168

%N Rowland's prime-generating sequence: a(1) = 7; for n > 1, a(n) = a(n-1) + gcd(n, a(n-1)).

%C The title refers to the sequence of first differences, A132199.

%C Setting a(1) = 4 gives A084662.

%C Rowland proves that the first differences are all 1's or primes. The prime differences form A137613.

%C See A137613 for additional comments, links and references. - _Jonathan Sondow_, Aug 14 2008

%C "This recurrence was discovered at the 2003 NKS Summer School by a group led by Matt Frank. This Demonstration allows initial conditions. a(1) >= 4. For 1 <= a(1) <= 3, a(n) - a(n-1) is 1 for n >= 3." See Wolfram hyperlink. - _Robert G. Wilson v_, Sep 10 2008

%C Not all starting values generate differences of all 1's or primes. The following a(1) generate composite differences: 532, 533, 534, 535, 698, 699, 706, 707, 708, 709, 712, 713, 714, 715, ... - _Dmitry Kamenetsky_, Jul 18 2015

%C The same results are obtained if 2's are removed from n when gcd is performed, so the following is also true: a(1) = 7; for n > 1, a(n) = a(n-1) + gcd(A000265(n), a(n-1)). - _David Morales Marciel_, Sep 14 2016

%D Eric S. Rowland, A simple prime-generating recurrence, Abstracts Amer. Math. Soc., 29 (No. 1, 2008), p. 50 (Abstract 1035-11-986).

%H T. D. Noe, <a href="/A106108/b106108.txt">Table of n, a(n) for n = 1..1000</a>

%H Fernando Chamizo, Dulcinea Raboso and Serafin Ruiz-Cabello, <a href="http://www.combinatorics.org/Volume_18/Abstracts/v18i2p10.html">On Rowland's sequence</a>, Electronic J. Combin., Vol. 18(2), 2011, #P10.

%H Brian Hayes, <a href="http://bit-player.org/2015/pumping-the-primes">Pumping the Primes</a>, bit-player, 19 August 2015.

%H Eric S. Rowland, <a href="http://arXiv.org/abs/0710.3217">A simple prime-generating recurrence</a>, arXiv:0710.3217 [math.NT], 2007-2008.

%H Eric S. Rowland, <a href="http://demonstrations.wolfram.com/PrimeGeneratingRecurrence/"> Prime-Generating Recurrence</a>, Wolfram Demonstrations Project. - _Robert G. Wilson v_, Sep 10 2008

%p S:=7; f:= proc(n) option remember; global S; if n=1 then RETURN(S); else RETURN(f(n-1)+gcd(n,f(n-1))); fi; end; [seq(f(n),n=1..200)];

%t a[1] = 7; a[n_] := a[n] = a[n - 1] + GCD[n, a[n - 1]]; Array[a, 66] (* _Robert G. Wilson v_, Sep 10 2008 *)

%o (PARI) a=vector(100);a[1]=7;for(n=2,#a,a[n]=a[n-1]+gcd(n,a[n-1]));a \\ _Charles R Greathouse IV_, Jul 15 2011

%o (Haskell)

%o a106108 n = a106108_list !! (n-1)

%o a106108_list =

%o 7 : zipWith (+) a106108_list (zipWith gcd a106108_list [2..])

%o -- _Reinhard Zumkeller_, Nov 15 2013

%o (MAGMA) [n le 1 select 7 else Self(n-1) + Gcd(n, Self(n-1)): n in [1..70]]; // _Vincenzo Librandi_, Jul 19 2015

%Y Cf. A084662, A084663, A132199, A134734, A134736, A134743, A134744, A134162, A137613, A221869.

%Y Cf. A230504.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Jan 28 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 20:44 EST 2016. Contains 278950 sequences.