login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106054 Trajectory of 1 under the morphism 1->{2,2,1,2,2}, 2->{3}, 3->{4,4,3,4,4}, 4->{1}. 0
2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 4, 4, 3, 4, 4, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 4, 4, 3, 4, 4, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 4, 4, 3, 4, 4, 1, 1, 1, 1, 4, 4, 3, 4, 4, 1, 1, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 3, 3, 2, 2, 1, 2, 2, 3, 3, 4, 4, 3, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Pentasilver dragon 5-symbol substitution, characteristic polynomial x^4-2*x^3+x-16.

The existence of the three polynomials silver: x^4-2*x^3+x^2-4, double silver: x^4-4x^3+4x^2-4 and pentasilver: x^4-2*x^3+x-16 confirms that a Kenyon-like polynomial of a general form: x^4-p*x^3+q*x^2-r exists with substitutions associated to it.

LINKS

Table of n, a(n) for n=0..98.

Index entries for sequences that are fixed points of mappings

MATHEMATICA

s[1] = {2, 2, 1, 2, 2}; s[2] = {3}; s[3] = {4, 4, 3, 4, 4}; s[4] = {1}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[5]

CROSSREFS

Sequence in context: A274534 A224030 A233136 * A275437 A169695 A173642

Adjacent sequences:  A106051 A106052 A106053 * A106055 A106056 A106057

KEYWORD

nonn

AUTHOR

Roger L. Bagula, May 06 2005

EXTENSIONS

Corrected and edited by N. J. A. Sloane, Jun 03 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 12:35 EST 2019. Contains 329261 sequences. (Running on oeis4.)