%I #9 Mar 30 2012 18:50:49
%S 0,0,2,1,2,2,2,1,1,1,2,2,4,4,4,1,1,2,2,1,4,4,4,3,3,3,3,3,4,4,4,2,2,3,
%T 3,3,3,3,4,3,3,3,3,3,3,3,5,2,2,2,2,2,2,2,7,5,5,5,5,5,5,5,7,2,2,2,2,3,
%U 3,3,4,2,3,2,2,4,4,4,5,2,3,2,2,2,2,2,3,3,6,6,6,5,5,6,6,4,5,4,4,4,4,5,5,4,4
%N Minimal number of editing steps (delete, insert or substitute) to transform the binary representation of n into that of A003714(n), the n-th fibbinary number.
%C A014417(n) = A007088(A003714(n)).
%H Michael Gilleland, <a href="http://www.merriampark.com/ld.htm">Levenshtein Distance</a> [It has been suggested that this algorithm gives incorrect results sometimes. - _N. J. A. Sloane_]
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ZeckendorfRepresentation.html">Zeckendorf Representation</a>
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F a(n) = LevenshteinDistance(A014417(n), A007088(n)).
%Y Cf. A035517, A000045, A072649, A070939.
%K nonn
%O 1,3
%A _Reinhard Zumkeller_, May 05 2005