OFFSET
0,2
COMMENTS
This sequence is the (type 1A) "jbasejfor" transformation of the sequence (-1, -1, -1, -1, ..) with respect to the floretion given in the program code. Under the same conditions, the jbasejfor transformation of the sequence (1, 1, 1, 1, ...) is A006253 [Number of perfect matchings (or domino tilings) in C_4 X P_n]; the jbasejfor transformation of the sequence (1, -1, 1, -1, ...) is A001075 [Chebyshev's T(n,x) polynomials evaluated at x=2]; the jbasejfor transformation of the sequence (-1, 1, -1, 1, ...) is A001353 [3*a(n)^2 + 1 is a perfect square]. In this sense, the sequences (a(n)), A006253, A001075 and A001353 form a "quartett".
Floretion Algebra Multiplication Program, FAMP Code: 4jbasejforseq[ + .25'i + .25'j + .25'k + .25i' + .25j' + .25k' + .25'ii' + .25'jj' + .25'kk' + .25'ij' + .25'ik' + .25'ji' + .25'jk' + .25'ki' + .25'kj' + .25e]. ForType: 1A. 1vesforseq = (-1, -1, -1, -1, ..).
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,3,-1).
FORMULA
G.f.: (1-x)*(1+2*x)/((1+x)*(1-4*x+x^2)).
a(n) = 3*a(n-1) + 3*a(n-2) - a(n-3). - Colin Barker, May 25 2015
a(n) = ( 4*ChebyshevU(n,2) - 5*ChebyshevU(n-1,2) - (-1)^n )/3. - G. C. Greubel, Jan 15 2020
E.g.f.: (exp(2*x)*(4*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) - cosh(x) + sinh(x))/3. - Stefano Spezia, Sep 19 2023
MAPLE
seq( simplify((4*ChebyshevU(n, 2) -5*ChebyshevU(n-1, 2) -(-1)^n)/3), n = 0..30); # G. C. Greubel, Jan 15 2020
MATHEMATICA
Table[(4*ChebyshevU[n, 2] -5*ChebyshevU[n-1, 2] -(-1)^n)/3, {n, 0, 30}] (* G. C. Greubel, Jan 15 2020 *)
nxt[{n_, a_, b_}]:={n+1, b, 4b-a-2(-1)^(n+1)}; NestList[nxt, {1, 1, 4}, 30][[;; , 2]] (* or *) LinearRecurrence[ {3, 3, -1}, {1, 4, 13}, 30] (* Harvey P. Dale, Apr 03 2024 *)
PROG
(PARI) Vec((1-x)*(1+2*x)/((1+x)*(1-4*x+x^2)) + O(x^30)) \\ Colin Barker, May 25 2015
(Magma) I:=[1, 4, 13]; [n le 3 select I[n] else 3*Self(n-1) +3*Self(n-2) -Self(n-3): n in [1..30]]; // G. C. Greubel, Jan 15 2020
(SageMath) [(4*chebyshev_U(n, 2) -5*chebyshev_U(n-1, 2) -(-1)^n)/3 for n in (0..30)] # G. C. Greubel, Jan 15 2020
(GAP) a:=[1, 4, 13];; for n in [4..30] do a[n]:=3*a[n-1]+3*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jan 15 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Apr 28 2005
STATUS
approved