The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105968 a(n) = 4*a(n-1) - a(n-2) - 2*(-1)^n, a(0) = 1, a(1) = 4. 2
 1, 4, 13, 50, 185, 692, 2581, 9634, 35953, 134180, 500765, 1868882, 6974761, 26030164, 97145893, 362553410, 1353067745, 5049717572, 18845802541, 70333492594, 262488167833, 979619178740, 3655988547125, 13644335009762, 50921351491921, 190041070957924 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This sequence is the (type 1A) "jbasejfor" transformation of the sequence (-1, -1, -1, -1, ..) with respect to the floretion given in the program code. Under the same conditions, the jbasejfor transformation of the sequence (1, 1, 1, 1, ...) is A006253 [Number of perfect matchings (or domino tilings) in C_4 X P_n]; the jbasejfor transformation of the sequence (1, -1, 1, -1, ...) is A001075 [Chebyshev's T(n,x) polynomials evaluated at x=2]; the jbasejfor transformation of the sequence (-1, 1, -1, 1, ...) is A001353 [3*a(n)^2 + 1 is a perfect square]. In this sense, the sequences (a(n)), A006253, A001075 and A001353 form a "quartett". LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,3,-1). FORMULA G.f.: (1-x)*(1+2*x)/((1+x)*(1-4*x+x^2)). a(n) + a(n+1) = A054491(n+1) - A054491(n). a(n) = 1/6*sqrt(3)*((2+sqrt(3))^n-(2-sqrt(3))^n)+2/3*((2-sqrt(3))^n+(2+sqrt(3))^n) -1/3*(-1)^n. - Paolo P. Lava, Jul 27 2011 a(n) = 3*a(n-1) + 3*a(n-2) - a(n-3). - Colin Barker, May 25 2015 a(n) = ( 4*ChebyshevU(n,2) - 5*ChebyshevU(n-1,2) - (-1)^n )/3. - G. C. Greubel, Jan 15 2020 MAPLE seq( simplify((4*ChebyshevU(n, 2) -5*ChebyshevU(n-1, 2) -(-1)^n)/3), n = 0..30); # G. C. Greubel, Jan 15 2020 MATHEMATICA Table[(4*ChebyshevU[n, 2] -5*ChebyshevU[n-1, 2] -(-1)^n)/3, {n, 0, 30}] (* G. C. Greubel, Jan 15 2020 *) PROG Floretion Algebra Multiplication Program, FAMP Code: 4jbasejforseq[ + .25'i + .25'j + .25'k + .25i' + .25j' + .25k' + .25'ii' + .25'jj' + .25'kk' + .25'ij' + .25'ik' + .25'ji' + .25'jk' + .25'ki' + .25'kj' + .25e]. ForType: 1A. 1vesforseq = (-1, -1, -1, -1, ..). (PARI) Vec((1-x)*(1+2*x)/((1+x)*(1-4*x+x^2)) + O(x^30)) \\ Colin Barker, May 25 2015 (Magma) I:=[1, 4, 13]; [n le 3 select I[n] else 3*Self(n-1) +3*Self(n-2) -Self(n-3): n in [1..30]]; // G. C. Greubel, Jan 15 2020 (Sage) [(4*chebyshev_U(n, 2) -5*chebyshev_U(n-1, 2) -(-1)^n)/3 for n in (0..30)] # G. C. Greubel, Jan 15 2020 (GAP) a:=[1, 4, 13];; for n in [4..30] do a[n]:=3*a[n-1]+3*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jan 15 2020 CROSSREFS Cf. A001075, A001353, A006253, A054491. Sequence in context: A299699 A056275 A149455 * A149456 A149457 A149458 Adjacent sequences: A105965 A105966 A105967 * A105969 A105970 A105971 KEYWORD easy,nonn AUTHOR Creighton Dement, Apr 28 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 14:43 EST 2022. Contains 358644 sequences. (Running on oeis4.)