login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105955 a(n) = Fibonacci(n) mod 11. 1
0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1).

FORMULA

From Colin Barker, Jan 02 2018: (Start)

G.f.: x*(1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 2*x^6 + 10*x^7 + x^8) / ((1 - x)*(1 + x)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)).

a(n) = 38*a(n-7) - a(n-14) for n>9.

(End)

EXAMPLE

Sequence is periodic with Pisano period 10. - Corrected by U. Takasi, Dec 27 2009

MATHEMATICA

Mod[Fibonacci[Range[0, 100]], 11] (* Harvey P. Dale, Jul 27 2012 *)

PROG

(MAGMA) [Fibonacci(n) mod 11: n in [0..100]]; // Vincenzo Librandi, Feb 04 2014

(PARI) for(n=0, 100, print1(fibonacci(n)%11, ", ")) \\ G. C. Greubel, Jan 01 2018

(PARI) concat(0, Vec(x*(1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 2*x^6 + 10*x^7 + x^8) / ((1 - x)*(1 + x)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)) + O(x^100))) \\ Colin Barker, Jan 02 2018

CROSSREFS

Sequence in context: A111301 A247193 A096320 * A003893 A152303 A064737

Adjacent sequences:  A105952 A105953 A105954 * A105956 A105957 A105958

KEYWORD

nonn,easy

AUTHOR

Shyam Sunder Gupta, May 05 2005

EXTENSIONS

Added a(0)=0 from Vincenzo Librandi, Feb 04 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 26 03:45 EDT 2018. Contains 304588 sequences. (Running on oeis4.)