

A105932


An eightsymbol substitution on an hypertetrahedron with four symbol connection per vertex.


1



1, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 2, 3, 4, 5, 1, 3, 4, 6, 1, 2, 4, 7, 1, 2, 3, 8, 1, 6, 7, 8, 1, 2, 3, 4, 5, 2, 3, 4, 5, 1, 3, 4, 6, 1, 2, 4, 7, 1, 2, 3, 8, 1, 6, 7, 8, 2, 3, 4, 5, 1, 3, 4, 6, 1, 2, 4, 7, 1, 2, 3, 8, 1, 6, 7, 8, 1, 3, 4, 6, 1, 2, 4, 7, 1, 2, 3, 8, 1, 6, 7, 8, 2, 3, 4, 5, 1, 2, 4, 7, 1, 2, 3, 8, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

This flow can be visualized in 3d by using a cube's vertices as the substitution for the eight points.


LINKS

Table of n, a(n) for n=0..104.


FORMULA

1>{2, 3, 4, 5}, 2>{1, 3, 4, 6}, 3>{1, 2, 4, 7}, 4>{1, 2, 3, 8}, 5>{1, 6, 7, 8}, 6>{2, 5, 7, 8}, 7>{3, 5, 6, 8}, 8>{4, 5, 6, 7}


MATHEMATICA

s[1]={2, 3, 4, 5}; s[2]={1, 3, 4, 6}; s[3]={1, 2, 4, 7}; s[4]={1, 2, 3, 8}; s[5]={1, 6, 7, 8}; s[6]={2, 5, 7, 8}; s[7]={3, 5, 6, 8}; s[8]={4, 5, 6, 7}; t[a_] := Join[a, Flatten[s/@a]]; p[0]={1}; p[1]=t[{1}]; p[n_]:=t[p[n1]] a=Flatten[Table[p[n], {n, 0, 3}]]


CROSSREFS

Sequence in context: A322425 A053841 A010884 * A106652 A193106 A283370
Adjacent sequences: A105929 A105930 A105931 * A105933 A105934 A105935


KEYWORD

nonn,uned


AUTHOR

Roger L. Bagula, Apr 26 2005


STATUS

approved



