login
Trajectory of 1 under the morphism 1->{1, 2, 4, 2, 1}, 2->{4, 3, 1, 3, 4}, 3->{2, 1, 3, 1, 2}, 4->{3, 4, 2, 4, 3}.
1

%I #12 Oct 02 2016 10:15:52

%S 1,2,4,2,1,4,3,1,3,4,3,4,2,4,3,4,3,1,3,4,1,2,4,2,1,3,4,2,4,3,2,1,3,1,

%T 2,1,2,4,2,1,2,1,3,1,2,3,4,2,4,3,2,1,3,1,2,3,4,2,4,3,4,3,1,3,4,3,4,2,

%U 4,3,2,1,3,1,2,3,4,2,4,3,2,1,3,1,2,1,2,4,2,1,2,1,3,1,2,3,4,2,4,3,1,2,4,2,1

%N Trajectory of 1 under the morphism 1->{1, 2, 4, 2, 1}, 2->{4, 3, 1, 3, 4}, 3->{2, 1, 3, 1, 2}, 4->{3, 4, 2, 4, 3}.

%C Edgar-Peano substitution of 4 symbols taken 5 at a time, fourth type: characteristic polynomial = -x^5+5*x^3-3*x^2+15*x.

%H F. M. Dekking, <a href="http://dx.doi.org/10.1016/0001-8708(82)90066-4">Recurrent Sets</a>, Advances in Mathematics, vol. 44, no.1, April 1982, page 85, section 4.1

%H G. A. Edgar and Jeffery Golds, <a href="http://arxiv.org/abs/math/9806039">A Fractal Dimension Estimate for a Graph-Directed IFS of Non-Similarities</a>, arXiv:math/9806039 [math.CA], 1991

%H <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a>

%t s[1] = {1, 2, 3, 2, 1}; s[2] = {4, 3, 2, 3, 4}; s[3] = {2, 1, 4, 1, 2}; s[4] = {3, 4, 1, 4, 3}; s[5] = {} t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]]; aa = p[3]

%K nonn

%O 0,2

%A _Roger L. Bagula_, May 04 2005

%E Edited by _N. J. A. Sloane_, Aug 31 2006