

A105791


Trajectory of 1 under the morphism 1>{1, 2, 4, 2, 1}, 2>{4, 3, 1, 3, 4}, 3>{2, 1, 3, 1, 2}, 4>{3, 4, 2, 4, 3}.


0



1, 2, 4, 2, 1, 4, 3, 1, 3, 4, 3, 4, 2, 4, 3, 4, 3, 1, 3, 4, 1, 2, 4, 2, 1, 3, 4, 2, 4, 3, 2, 1, 3, 1, 2, 1, 2, 4, 2, 1, 2, 1, 3, 1, 2, 3, 4, 2, 4, 3, 2, 1, 3, 1, 2, 3, 4, 2, 4, 3, 4, 3, 1, 3, 4, 3, 4, 2, 4, 3, 2, 1, 3, 1, 2, 3, 4, 2, 4, 3, 2, 1, 3, 1, 2, 1, 2, 4, 2, 1, 2, 1, 3, 1, 2, 3, 4, 2, 4, 3, 1, 2, 4, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

EdgarPeano substitution of 4 symbols taken 5 at a time, fourth type: characteristic polynomial = x^5+5*x^33*x^2+15*x.


LINKS

Table of n, a(n) for n=0..104.
F. M. Dekking, Recurrent Sets, Advances in Mathematics, vol. 44, no.1, April 1982, page 85, section 4.1
G. A. Edgar and Jeffery Golds, A Fractal Dimension Estimate for a GraphDirected IFS of NonSimilarities, arXiv:math/9806039 [math.CA], 1991
Index entries for sequences that are fixed points of mappings


MATHEMATICA

s[1] = {1, 2, 3, 2, 1}; s[2] = {4, 3, 2, 3, 4}; s[3] = {2, 1, 4, 1, 2}; s[4] = {3, 4, 1, 4, 3}; s[5] = {} t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n  1]]; aa = p[3]


CROSSREFS

Sequence in context: A079046 A079045 A021417 * A116515 A037178 A077748
Adjacent sequences: A105788 A105789 A105790 * A105792 A105793 A105794


KEYWORD

nonn


AUTHOR

Roger L. Bagula, May 04 2005


EXTENSIONS

Edited by N. J. A. Sloane, Aug 31 2006


STATUS

approved



