

A105788


a(1) = 1; a(m) = minimum numerator possible with a continued fraction [b(1);b(2),b(3),...b(m1)], where (b(1),b(2),b(3),...b(m1)) is a permutation of (a(1),a(2),a(3),...a(m1)).


1



1, 1, 2, 4, 16, 192, 29984, 776474136, 582837534997525192, 334033256143852482501323872038100184, 111432026121971983026248175426087984579225579894344486903683496908882296
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


LINKS

Table of n, a(n) for n=1..11.


EXAMPLE

a(6)=192 because the minimum numerator among permutations of
(1,1,2,4,16) happens when the continued fraction is [1:4,2,16,1]=192/157 or
[1:16,2,4,1]=192/181.


MATHEMATICA

a[1] = 1; a[n_] := a[n] = Union[ Numerator /@ FromContinuedFraction /@ Permutations[ Table[ a[i], {i, n  1}]]] [[1]]; Table[ a[n], {n, 11}]


CROSSREFS

Cf. A105787.
Sequence in context: A202360 A050472 A109457 * A217727 A071008 A220169
Adjacent sequences: A105785 A105786 A105787 * A105789 A105790 A105791


KEYWORD

nonn


AUTHOR

Leroy Quet and Robert G. Wilson v, Apr 19 2005


STATUS

approved



