

A105687


Number of inequivalent codes attaining highest minimal Hamming distance of any Type 4^H+ Hermitian additive selfdual code over GF(4) of length n.


2



1, 1, 1, 3, 1, 1, 4, 5, 8, 120, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


REFERENCES

C. Bachoc and P. Gaborit, On extremal additive F_4 codes of length 10 to 18, in International Workshop on Coding and Cryptography (Paris, 2001), Electron. Notes Discrete Math. 6 (2001), 10 pp.
P. Gaborit, W. C. Huffman, J.L. Kim and V. S. Pless, On additive GF(4) codes, in Codes and Association Schemes (Piscataway, NJ, 1999), A. Barg and S. Litsyn, eds., Amer. Math. Soc., Providence, RI, 2001, pp. 135149.
G. Hoehn, Selfdual codes over the Kleinian fourgroup, Math. Ann. 327 (2003), 227255.


LINKS

Table of n, a(n) for n=1..12.
G. Nebe, E. M. Rains and N. J. A. Sloane, SelfDual Codes and Invariant Theory, Springer, Berlin, 2006.
A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory, 44 (1998), 13691387.
L. E. Danielsen, Database of SelfDual Quantum Codes.
L. E. Danielsen and M. G. Parker, On the classification of all selfdual additive codes over GF(4) of length up to 12, preprint, 2005.
E. M. Rains and N. J. A. Sloane, Selfdual codes, pp. 177294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).


CROSSREFS

Cf. A094927, A090899, A105674, A105675, A105676, A105677, A105678, A016729, A066016, A105681, A105682.
A016729 gives the minimal distance of these codes.
A094927 gives the number of inequivalent codes of any distance.
Sequence in context: A321876 A131238 A133380 * A209415 A058879 A208344
Adjacent sequences: A105684 A105685 A105686 * A105688 A105689 A105690


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, May 06 2005


EXTENSIONS

Corrected and extended to 12 terms by Lars Eirik Danielsen (larsed(AT)ii.uib.no) and Matthew G. Parker (matthew(AT)ii.uib.no), Jun 30 2005


STATUS

approved



