login
Fixed point of the morphism 1 -> 121, 2 -> 343, 3 -> 434, 4 -> 212, starting from a(0) = 1.
0

%I #14 Jan 08 2024 14:29:58

%S 1,2,1,3,4,3,1,2,1,4,3,4,2,1,2,4,3,4,1,2,1,3,4,3,1,2,1,2,1,2,4,3,4,2,

%T 1,2,3,4,3,1,2,1,3,4,3,2,1,2,4,3,4,2,1,2,1,2,1,3,4,3,1,2,1,4,3,4,2,1,

%U 2,4,3,4,1,2,1,3,4,3,1,2,1,3,4,3,1,2,1,3,4,3,2,1,2,4,3,4,2,1,2,3,4,3,1,2,1

%N Fixed point of the morphism 1 -> 121, 2 -> 343, 3 -> 434, 4 -> 212, starting from a(0) = 1.

%C Rectangular space-fill from Peano space-fill by row permutation of the digraph matrix: Characteristic polynomial: x^4-3*x^3-3*x+9.

%H F. M. Dekking, <a href="http://dx.doi.org/10.1016/0001-8708(82)90066-4">Recurrent Sets</a>, Advances in Mathematics, vol. 44, no.1, April 1982, page 85, section 4.1.

%H <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a>

%F 1->{1, 2, 1}, 2->{3, 4, 3}, 3->{4, 3, 4}, 4->{2, 1, 2}

%t Flatten[ Nest[ Flatten[ # /. {1 -> {1, 2, 1}, 2 -> {3, 4, 3}, 3 -> {4, 3, 4}, 4 -> {2, 1, 2}}] &, {1}, 4]] (* _Robert G. Wilson v_ *)

%K nonn

%O 0,2

%A _Roger L. Bagula_, May 03 2005

%E Edited by _Robert G. Wilson v_, Jan 24 2006