The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105634 Expansion of Sum_{k>0} Kronecker(k,7)*x^k*(1 + x^k)/(1 - x^k)^3. 1

%I

%S 1,5,8,21,24,40,49,85,73,120,122,168,168,245,192,341,288,365,360,504,

%T 392,610,530,680,601,840,656,1029,842,960,960,1365,976,1440,1176,1533,

%U 1370,1800,1344,2040,1680,1960,1850,2562,1752,2650,2208,2728,2401,3005

%N Expansion of Sum_{k>0} Kronecker(k,7)*x^k*(1 + x^k)/(1 - x^k)^3.

%D A. Balog, H. Darmon and K. Ono, Congruence for Fourier coefficients of half-integral weight modular forms and special values of L-functions, pp. 105-128 of Analytic number theory, Vol. 1, Birkhauser, Boston, 1996, see page 107.

%D B. Berndt, Commentary on Ramanujan's Papers, pp. 357-426 of Collected Papers of Srinivasa Ramanujan, Ed. G. H. Hardy et al., AMS Chelsea 2000. See page 372 (4).

%F Multiplicative with a(p^e) = p^(2e) if p = 7; (p^(2e+2)-1)/(p^2-1) if p == 1, 2, 4 (mod 7); (p^(2e+2)+(-1)^e)/(p^2+1) if p == 3, 5, 6 (mod 7).

%F G.f.: Sum_{k>0} Kronecker(k, 7)*x^k*(1+x^k)/(1-x^k)^3.

%F a(n) = A002656(n) + 8*A053724(n-2).

%F a(7n) = 49a(n).

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (7 t)) = 7^(-1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is g.f. for A138809.

%e q + 5*q^2 + 8*q^3 + 21*q^4 + 24*q^5 + 40*q^6 + 49*q^7 + 85*q^8 + 73*q^9 + ...

%o (PARI) {a(n)=local(A,p,e); if(n<2, n==1, A=factor(n); prod(k=1,matsize(A)[1], if(p=A[k,1], e=A[k,2]; if(p==7, p^(2*e), if(kronecker(p,7)==1, (p^(2*e+2)-1)/(p^2-1), (p^(2*e+2)+(-1)^e)/(p^2+1)))))) }

%o (PARI) {a(n)=local(A,B); if(n<1, 0, n--; A=x*O(x^n); polcoeff( if(B=eta(x^7+A), A=eta(x+A); (A*B)^3+8*x*B^7/A), n))}

%o (PARI) {a(n) = if( n<1, 0, sumdiv(n, d, d^2 * kronecker(-7, n / d)))}

%K nonn,mult

%O 1,2

%A _Michael Somos_, Apr 16 2005, Mar 31 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 16 14:56 EST 2021. Contains 340206 sequences. (Running on oeis4.)