login
a(1) = 1, and for n >= 2, a(n) = prime(bigomega(n)), where prime(n) = A000040(n) and bigomega(n) = A001222(n).
16

%I #31 Jun 15 2017 02:52:11

%S 1,2,2,3,2,3,2,5,3,3,2,5,2,3,3,7,2,5,2,5,3,3,2,7,3,3,5,5,2,5,2,11,3,3,

%T 3,7,2,3,3,7,2,5,2,5,5,3,2,11,3,5,3,5,2,7,3,7,3,3,2,7,2,3,5,13,3,5,2,

%U 5,3,5,2,11,2,3,5,5,3,5,2,11,7,3,2,7,3,3,3,7,2,7,3,5,3,3,3,13,2,5,5,7

%N a(1) = 1, and for n >= 2, a(n) = prime(bigomega(n)), where prime(n) = A000040(n) and bigomega(n) = A001222(n).

%C From _Antti Karttunen_, Jul 21 2014: (Start)

%C a(n) divides A122111(n), A242424(n), A243072(n), A243073(n) because a(n) divides all the terms in column n of A243070.

%C a(2n-1) divides A243505(n) and a(2n-1)^2 divides A122111(2n-1).

%C (End)

%H Antti Karttunen, <a href="/A105560/b105560.txt">Table of n, a(n) for n = 1..10000</a>

%F a(1) = 1, and for n >= 2, a(n) = A000040(A001222(n)).

%F From _Antti Karttunen_, Jul 21 2014: (Start)

%F a(n) = A008578(1 + A001222(n)).

%F a(n) = A006530(A122111(n)).

%F a(n) = A122111(n) / A122111(A064989(n)).

%F a(2n-1) = A122111(2n-1) / A243505(n).

%F a(n) = A242424(n) / A064989(n).

%F (End)

%t Table[Prime[Sum[FactorInteger[n][[i,2]],{i,1,Length[FactorInteger[n]]}]],{n,2,40}] (* _Stefan Steinerberger_, May 16 2007 *)

%o (PARI) d(n) = for(x=2,n,print1(prime(bigomega(x))","))

%o (Python)

%o from sympy import prime, primefactors

%o def a001222(n): return 0 if n==1 else a001222(n/primefactors(n)[0]) + 1

%o def a(n): return 1 if n==1 else prime(a001222(n)) # _Indranil Ghosh_, Jun 15 2017

%Y Cf. A000040, A001222, A006530, A008578, A243070, A242424, A243072, A243073, A122111, A243505.

%K easy,nonn

%O 1,2

%A _Cino Hilliard_, May 03 2005

%E a(1) = 1 prepended by _Antti Karttunen_, Jul 21 2014