login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105560 a(1) = 1, and for n >= 2, a(n) = prime(bigomega(n)), where prime(n) = A000040(n) and bigomega(n) = A001222(n). 11
1, 2, 2, 3, 2, 3, 2, 5, 3, 3, 2, 5, 2, 3, 3, 7, 2, 5, 2, 5, 3, 3, 2, 7, 3, 3, 5, 5, 2, 5, 2, 11, 3, 3, 3, 7, 2, 3, 3, 7, 2, 5, 2, 5, 5, 3, 2, 11, 3, 5, 3, 5, 2, 7, 3, 7, 3, 3, 2, 7, 2, 3, 5, 13, 3, 5, 2, 5, 3, 5, 2, 11, 2, 3, 5, 5, 3, 5, 2, 11, 7, 3, 2, 7, 3, 3, 3, 7, 2, 7, 3, 5, 3, 3, 3, 13, 2, 5, 5, 7 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

From Antti Karttunen, Jul 21 2014: (Start)

a(n) divides A122111(n), A242424(n), A243072(n), A243073(n) because a(n) divides all the terms in column n of A243070.

a(2n-1) divides A243505(n) and a(2n-1)^2 divides A122111(2n-1).

(End)

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000

FORMULA

a(1) = 1, and for n >= 2, a(n) = A000040(A001222(n)).

From Antti Karttunen, Jul 21 2014: (Start)

a(n) = A008578(1 + A001222(n)).

a(n) = A006530(A122111(n)).

a(n) = A122111(n) / A122111(A064989(n)).

a(2n-1) = A122111(2n-1) / A243505(n).

a(n) = A242424(n) / A064989(n).

(End)

MATHEMATICA

Table[Prime[Sum[FactorInteger[n][[i, 2]], {i, 1, Length[FactorInteger[n]]}]], {n, 2, 40}] (* Stefan Steinerberger, May 16 2007 *)

PROG

(PARI) d(n) = for(x=2, n, print1(prime(bigomega(x))", "))

(Python)

from sympy import prime, primefactors

def a001222(n): return 0 if n==1 else a001222(n/primefactors(n)[0]) + 1

def a(n): return 1 if n==1 else prime(a001222(n)) # Indranil Ghosh, Jun 15 2017

CROSSREFS

Cf. A000040, A001222, A006530, A008578, A243070, A242424, A243072, A243073, A122111, A243505.

Sequence in context: A255598 A060324 A046216 * A165916 A096013 A072380

Adjacent sequences:  A105557 A105558 A105559 * A105561 A105562 A105563

KEYWORD

easy,nonn

AUTHOR

Cino Hilliard, May 03 2005

EXTENSIONS

a(1) = 1 prepended by Antti Karttunen, Jul 21 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 16 15:53 EST 2019. Contains 319195 sequences. (Running on oeis4.)