login
A105509
Numbers m such that 9 is the leading digit of the m-th Fibonacci number in decimal representation.
9
16, 35, 59, 83, 102, 126, 150, 169, 193, 212, 236, 260, 279, 303, 327, 346, 370, 394, 413, 437, 461, 480, 504, 528, 547, 571, 595, 614, 638, 657, 681, 705, 724, 748, 772, 791, 815, 839, 858, 882, 906, 925, 949, 973, 992, 1016, 1040, 1059, 1083, 1102, 1107
OFFSET
1,1
COMMENTS
A008963(a(n)) = 9; A105519(a(n)) = A105519(a(n) - 1) + 1.
Comment from Jonathan Vos Post, Dec 23 2006: Peterson says: "Calculate 100/89 = 1.1235955056... This fraction generates the first five Fibonacci numbers before blurring into other digits. ... 10000/9899 = 1.0102030508132134559046368... generates the first 10 Fibonacci numbers (using two digits per number). 1000000/998999 generates the first 15 Fibonacci numbers (using three digits per number). ... in successive fractions, two 0's are appended to the numerator and a 9 to the beginning and end of the denominator...."
LINKS
M. Bicknell-Johnson, A generalized magic trick from Fibonacci: Designer decimals, College Mathematics Journal 35(March):125-126, 2004.
O-Y. Chan and J. Smoak, More designer decimals: The integers and their geometric extensions College Mathematics Journal 37(November):355-363, 2006.
Ivars Peterson, Designer Decimals, Science News, Week of Nov 04 2006; Vol. 170, No. 19.
J. Smoak, and T.J. Osler, A magic trick from Fibonacci. College Mathematics Journal, 34 (2003):58-60.
FORMULA
m such that d(m+5)-d(m) = 2 for d(m) = floor(1 + log_10(F(m))) and F(m) = m-th Fibonacci number = A000045(m). - Jonathan Vos Post, Dec 23 2006
a(n) ~ k*n by the equidistribution theorem, where k = 1/(1 - log(9)/log(10)) = 21.8543.... - Charles R Greathouse IV, Oct 07 2016
EXAMPLE
a(10)=21: A008963(212) = A000030(A000045(212)) =
A000030(90343046356137747723758225621187571439538669) = 9.
MATHEMATICA
Select[Range@ 1200, First@ IntegerDigits@ Fibonacci@ # == 9 &] (* Michael De Vlieger, Aug 21 2016 *)
PROG
(PARI) is(n)=digits(fibonacci(n))[1]==9 \\ Charles R Greathouse IV, Oct 07 2016
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Apr 11 2005
STATUS
approved