login
A105492
Number of partitions of {1,...,n} containing 2 strings of 3 consecutive integers such that only v-strings of consecutive integers can appear in a block, where v = 1,2,3.
2
1, 6, 36, 210, 1260, 7833, 50701, 342126, 2406645, 17633820, 134427468, 1064801442, 8751834839, 74540800014
OFFSET
6,2
COMMENTS
Partitions enumerated by A105484 in which the maximal length of consecutive integers in a block is 3.
REFERENCES
A. O. Munagi, Set Partitions with Successions and Separations, Int. J. Math and Math. Sc. 2005, no. 3 (2005), 451-463
LINKS
FORMULA
a(n)=Sum(w(n, k, 2), k=1...n), where w(n, k, 2) is the case r=2 of w(n, k, r) given by w(m, k, r)=w(m-1, k-1, r)+(k-1)w(m-1, k, r)+w(m-2, k-1, r)+(k-1)w(m-2, k, r) +w(m-3, k-1, r-1)+(k-1)w(m-3, k, r-1) r=0, 1, ..., floor(n/3), k=1, 2, ..., n-2r, w(n, k, 0)=sum(binomial(n-j, j)*S2(n-j-1, k-1), j=0..floor(n/2)).
EXAMPLE
a(7)=6; the enumerated partitions are 123567/4, 1237/456, 1567/234, 123/456/7, 123/4/567, 1/234/567.
CROSSREFS
KEYWORD
more,nonn
AUTHOR
Augustine O. Munagi, Apr 11 2005
STATUS
approved