login
Primes from merging of 8 successive digits in decimal expansion of Zeta(2) or (Pi^2)/6.
1

%I #18 Feb 16 2025 08:32:57

%S 51892189,55822937,29370007,40043189,28724687,10294633,54796811,

%T 75645587,55876963,32008051,63647887,42276587,32044721,49278263,

%U 38903797,90379763,63583343,35833439,12081809,20818099,18099593

%N Primes from merging of 8 successive digits in decimal expansion of Zeta(2) or (Pi^2)/6.

%C Initial zeros are not permitted, so each term in the sequence has eight digits. - _Harvey P. Dale_, Nov 11 2011

%H Vincenzo Librandi, <a href="/A105381/b105381.txt">Table of n, a(n) for n = 1..1000</a>

%H The first <a href="http://www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/chap96.html">10,000 digits of Zeta(2)</a> as calculated by _Simon Plouffe_ at WorldWideSchool.org.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RiemannZetaFunction.html">Riemann Zeta Functions</a>

%t With[{c = FromDigits /@ Partition[RealDigits[Pi^2/6, 10, 1000][[1]], 8, 1]}, Select[c,IntegerLength[#] == 8 && PrimeQ[#] &]] (* _Harvey P. Dale_, Nov 11 2011 *)

%t Select[FromDigits /@ Partition[RealDigits[Zeta[2], 10, 31700][[1]], 8, 1], # > 9999999 && PrimeQ[#] &] (* _Vincenzo Librandi_, Apr 28 2013 *)

%Y Cf. A013661.

%K nonn,base,changed

%O 1,1

%A Andrew G. West (WestA(AT)wlu.edu), Apr 02 2005

%E Offset changed from 0 to 1 by _Vincenzo Librandi_, Apr 28 2013