The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105370 Expansion of ((1+x)^4-(1+x)x^3)/((1+x)^5-x^5). 2
 1, -1, 1, -2, 5, -10, 15, -15, 0, 50, -175, 450, -1000, 2000, -3625, 5875, -8125, 8125, 0, -29375, 106250, -278125, 621875, -1243750, 2250000, -3640625, 5031250, -5031250, 0, 18203125, -65859375, 172421875, -385546875, 771093750, -1394921875, 2257031250, -3119140625, 3119140625, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Binomial transform is A105367. Consecutive pair sums of 105369. LINKS Index entries for linear recurrences with constant coefficients, signature (-5,-10,-10,-5). FORMULA G.f.: (1+x)(1+3x+3x^2)/(1+5x+10x^2+10x^3+5x^4); a(n)=(5/2-sqrt(5)/2)^(n/2)((1/2+sqrt(5)/10)cos(7*pi*n/10)+ sqrt(1/10-sqrt(5)/50)sin(7*pi*n/10))- (5/2+sqrt(5)/2)^(n/2)((sqrt(5)/10-1/2)cos(9*pi*n/10)+sqrt(1/10+sqrt(5)/50)sin(9*pi*n/10)) a(0)=1, a(1)=-1, a(2)=1, a(3)=-2, a(n)=-5*a(n-1)-10*a(n-2)- 10*a(n-3)- 5*a(n-4)  From Harvey P. Dale, May 23 2012 MATHEMATICA CoefficientList[Series[((1+x)^4-(1+x)x^3)/((1+x)^5-x^5), {x, 0, 40}], x] (* or *) LinearRecurrence[{-5, -10, -10, -5}, {1, -1, 1, -2}, 41]  (* Harvey P. Dale, May 23 2012 *) CROSSREFS Sequence in context: A064955 A101725 A274453 * A173694 A190459 A135042 Adjacent sequences:  A105367 A105368 A105369 * A105371 A105372 A105373 KEYWORD easy,sign AUTHOR Paul Barry, Apr 01 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 22:57 EDT 2020. Contains 336473 sequences. (Running on oeis4.)