%I
%S 1,2,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
%T 0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
%U 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0
%N An indicator sequence for the Jacobsthal numbers.
%C a(n) is the number of solutions to the Diophantine equation 2*x^2  (9*n+1)*x + 9*n^2 = 1 where valid solutions are restricted to powers of 4.  _Hieronymus Fischer_, May 17 2007
%H Antti Karttunen, <a href="/A105348/b105348.txt">Table of n, a(n) for n = 0..87381</a>
%F G.f.: Sum_{k>=0} x^A001045(k).
%F a(n) = 1 + floor(log_2(3n+1))  ceiling(log_2(3n1)) = floor(log_2(3n+1))  floor(log_2(3n2)) for n >= 1. Also true: a(n) = 1 + A130249(n)  A130250(n) = A130253(n)  A130250(n) = A130250(n+1)  A130250(n) for n >= 0.  _Hieronymus Fischer_, May 17 2007
%e a(1)=2 since J(1)=J(2)=1.
%o (PARI)
%o A147612aux(n,i) = if(!(n%2),n,A147612aux((n+i)/2,i));
%o A147612(n) = 0^(A147612aux(n,1)*A147612aux(n,1));
%o A105348(n) = if(1==n,2,A147612(n)); \\ _Antti Karttunen_, Nov 02 2018
%Y For partial sums see A130253. Cf. A130249, A130250, A147612.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Apr 01 2005
