login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105343 Elements of even index in the sequence gives A005893, points on surface of tetrahedron: 2n^2 + 2 for n > 1. 4
1, 3, 4, 7, 10, 15, 20, 27, 34, 43, 52, 63, 74, 87, 100, 115, 130, 147, 164, 183, 202, 223, 244, 267, 290, 315, 340, 367, 394, 423, 452, 483, 514, 547, 580, 615, 650, 687, 724, 763, 802, 843, 884, 927, 970, 1015, 1060, 1107, 1154, 1203, 1252, 1303, 1354, 1407 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

May be seen as the jesforrok-transform of the zero-sequence (A000004) with respect to the floretion given in the program code.

Identical to A267459(n+1) for n > 0. - Guenther Schrack, Jun 01 2018

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).

FORMULA

G.f.: (1 + x - 2*x^2 + x^3 + x^4)/((x+1)*(1-x)^3); a(n+2) - 2*a(n+1) + a(n) = (-1)^(n+1)*A084099(n).

a(n) = (1/4)*(2*n^2 + 9 - (-1)^n ), n>1. - Ralf Stephan, Jun 01 2007

EXAMPLE

G.f. = 1 + 3*x + 4*x^2 + 7*x^3 + 10*x^4 + 15*x^5 + 20*x^6 + 27*x^7 + ... - Michael Somos, Jun 26 2018

MATHEMATICA

Join[{1}, LinearRecurrence[{2, 0, -2, 1}, {3, 4, 7, 10}, 60]] (* Jean-Fran├žois Alcover, Nov 13 2017 *)

PROG

Floretion Algebra Multiplication Program, FAMP Code: 2jesforrokseq[E*F*sig(E)] with E = + .5i' + .5j' + .5'ki' + .5'kj', F the sum of all floretion basis vectors and "sig" the swap-operator. RokType: Y[15] = Y[15] + Math.signum(Y[15])*p (internal program code)

(MAGMA) [1], [(1/4)*(2*n^2 + 9 - (-1)^n): n in [0..60]]; // Vincenzo Librandi, Oct 10 2011

(PARI) {a(n) = if( n<1, n==0, (2*n^2 + 10)\4)}; /* Michael Somos, Jun 26 2018 */

CROSSREFS

Cf. A005893, A084099.

Sequence in context: A287458 A050572 A249668 * A237834 A147789 A047625

Adjacent sequences:  A105340 A105341 A105342 * A105344 A105345 A105346

KEYWORD

easy,nonn,changed

AUTHOR

Creighton Dement, Apr 30 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 16 00:11 EST 2018. Contains 317252 sequences. (Running on oeis4.)