

A105343


Elements of even index in the sequence gives A005893, points on surface of tetrahedron: 2n^2 + 2 for n > 1.


1



1, 3, 4, 7, 10, 15, 20, 27, 34, 43, 52, 63, 74, 87, 100, 115, 130, 147, 164, 183, 202, 223, 244, 267, 290, 315, 340, 367, 394, 423, 452, 483, 514, 547, 580, 615, 650, 687, 724, 763, 802, 843, 884, 927, 970, 1015, 1060, 1107, 1154, 1203, 1252, 1303, 1354, 1407
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

May be seen as the jesforroktransform of the zerosequence (A000004) with respect to the floretion given in the program code.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (2,0,2,1).


FORMULA

G.f. (1+x2*x^2+x^3+x^4)/((x+1)*(1x)^3); a(n+2)  2*a(n+1) + a(n) = (1)^(n+1)*A084099(n).
a(n) = (1/4)*(2*n^2 + 9  (1)^n ), n>1.  Ralf Stephan, Jun 01 2007


MATHEMATICA

Join[{1}, LinearRecurrence[{2, 0, 2, 1}, {3, 4, 7, 10}, 60]] (* JeanFrançois Alcover, Nov 13 2017 *)


PROG

Floretion Algebra Multiplication Program, FAMP Code: 2jesforrokseq[E*F*sig(E)] with E = + .5i' + .5j' + .5'ki' + .5'kj', F the sum of all floretion basis vectors and "sig" the swapoperator. RokType: Y[15] = Y[15] + Math.signum(Y[15])*p (internal program code)
(MAGMA) [1], [(1/4)*(2*n^2 + 9  (1)^n): n in [0..60]]; // Vincenzo Librandi, Oct 10 2011


CROSSREFS

Cf. A005893, A084099.
Sequence in context: A287458 A050572 A249668 * A237834 A147789 A047625
Adjacent sequences: A105340 A105341 A105342 * A105344 A105345 A105346


KEYWORD

easy,nonn,changed


AUTHOR

Creighton Dement, Apr 30 2005


STATUS

approved



