login
A105241
Vector triangular array of Fibonacci tensor Markov.
0
0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 1, 3, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 1, 3, 2, 2, 2, 4, 3, 3, 1, 4, 0
OFFSET
1,16
COMMENTS
This is the triangle form from {6,2,2}. T[n,k,j] levels j: {0, 1, 1, 1} {0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2} {0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 1, 3} {0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 1, 3, 2, 2, 2, 4, 3, 3, 1, 4}
FORMULA
v[n]=M.v[n-1] M={M1, M2} M1={{0, 1}, {1, 0}} M2={{0, 1}, {1, 1}} Selective flattening and expression to get a vector triangle representation =a[n]
MATHEMATICA
v[1] = {{0, 1}, {1, 1}} M = {{{0, 1}, {1, 1}}, {{0, 1}, {1, 1}}} v[n_] := v[n] = M.v[n - 1] a = Table[v[n], {n, 1, 6}] Dimensions[a aa = Table[Flatten[Table[Table[a[[n, j]], {j, 1, 2}], {n, 1, m}]], {m, 1, 6}] aout= Flatten[aa]
CROSSREFS
Sequence in context: A325987 A359324 A353421 * A134541 A286627 A182071
KEYWORD
nonn,uned,obsc
AUTHOR
Roger L. Bagula, Apr 12 2005
STATUS
approved