login
Trajectory of 1 under the morphism 1 -> 121, 2 -> 434, 3 -> 212, 4 -> 343.
0

%I #19 May 16 2021 06:10:41

%S 1,2,1,4,3,4,1,2,1,3,4,3,2,1,2,3,4,3,1,2,1,4,3,4,1,2,1,2,1,2,3,4,3,2,

%T 1,2,4,3,4,1,2,1,4,3,4,2,1,2,3,4,3,2,1,2,1,2,1,4,3,4,1,2,1,3,4,3,2,1,

%U 2,3,4,3,1,2,1,4,3,4,1,2,1,4,3,4,1,2,1,4,3,4,2,1,2,3,4,3,2,1,2,4,3,4,1,2,1

%N Trajectory of 1 under the morphism 1 -> 121, 2 -> 434, 3 -> 212, 4 -> 343.

%C Incorrect attempt to recreate Example (4.1) from the Dekking reference. - _Joerg Arndt_, May 16 2021

%C Characteristic polynomial is x^4-3*x^3-3*x+9 = (x-3) * (x^3-3).

%H F. M. Dekking, <a href="http://dx.doi.org/10.1016/0001-8708(82)90066-4">Recurrent sets</a>, Advances in Mathematics, vol. 44, no. 1 (1982), 78-104; page 85, section 4.1.

%H <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a>

%t Flatten[ Nest[ Flatten[ # /. {1 -> {1, 2, 1}, 2 -> {4, 3, 4}, 3 -> {2, 1, 2}, 4 -> {3, 4, 3}} &], {1}, 5]]

%K nonn,easy,less

%O 0,2

%A _Roger L. Bagula_, Apr 29 2005

%E Edited by _Joerg Arndt_, May 16 2021