login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105200 Number of compositions of n such that the least part occurs with odd multiplicity. 3
1, 1, 4, 3, 13, 16, 41, 64, 154, 261, 560, 1049, 2176, 4169, 8474, 16614, 33477, 66178, 132776, 263969, 528519, 1053483, 2107772, 4207680, 8415341, 16812773, 33622527, 67203682, 134391649, 268686218, 537318189, 1074403625, 2148636672, 4296709932, 8592918851 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..600

FORMULA

G.f.: Sum(Sum(binomial(k, 2*l-1)*x^(2*k-2*l+1)/((1-x)^(k-2*l+1)*(1-x^k)), l=1..floor((k+1)/2)), k=1..infinity).

a(n) ~ 2^(n-2). - Vaclav Kotesovec, Sep 10 2014

MAPLE

b:= proc(n, i, p) option remember; `if`(i<1, 0, add(

      `if`(n=i*j, `if`(irem(j, 2)=1, (p+j)!/j!, 0),

       b(n-i*j, i-1, p+j)/j!), j=0..n/i))

    end:

a:= proc(n) option remember; b(n$2, 0) end:

seq(a(n), n=1..45);  # Alois P. Heinz, May 13 2014

MATHEMATICA

Rest[ CoefficientList[ Series[ Sum[ Binomial[k, 2l - 1] x^(2k - 2l + 1)/((1 - x)^(k - 2*l + 1)(1 - x^k)), {k, 34}, {l, Floor[(k + 1)/2]}], {x, 0, 34}], x]] (* Robert G. Wilson v, Apr 12 2005 *)

CROSSREFS

Cf. A096375.

Sequence in context: A120340 A082018 A056477 * A088933 A019136 A140884

Adjacent sequences:  A105197 A105198 A105199 * A105201 A105202 A105203

KEYWORD

easy,nonn

AUTHOR

Vladeta Jovovic, Apr 12 2005

EXTENSIONS

More terms from Robert G. Wilson v, Apr 12 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 28 00:41 EDT 2015. Contains 261101 sequences.