login
A105114
Triangle read by rows: T(n,k) is the number of compositions of n having exactly k parts equal to 2.
6
1, 1, 1, 1, 2, 2, 4, 3, 1, 7, 6, 3, 12, 13, 6, 1, 21, 26, 13, 4, 37, 50, 30, 10, 1, 65, 96, 66, 24, 5, 114, 184, 139, 59, 15, 1, 200, 350, 288, 140, 40, 6, 351, 661, 591, 318, 105, 21, 1, 616, 1242, 1199, 704, 266, 62, 7, 1081, 2324, 2406, 1533, 645, 174, 28, 1, 1897, 4332
OFFSET
0,5
COMMENTS
Row n has 1+floor(n/2) terms. Row sums are the powers of 2 (A000079). Column 0 yields A005251.
Number of binary words of length n-1 having k isolated 0's. Example: T(5,1)=6 because we have 0111, 0100, 1011, 1101, 0010 and 1110. - Emeric Deutsch, May 21 2006
LINKS
FORMULA
G.f.: (1-z)/(1-2z+z^2-z^3-tz^2+tz^3).
EXAMPLE
T(7,3) = 4 because we have (1,2,2,2), (2,1,2,2), (2,2,1,2) and (2,2,2,1).
Triangle begins:
1;
1;
1, 1;
2, 2;
4, 3, 1;
7, 6, 3;
12, 13, 6, 1;
21, 26, 13, 4;
37, 50, 30, 10, 1;
65, 96, 66, 24, 5;
114, 184, 139, 59, 15, 1;
200, 350, 288, 140, 40, 6;
351, 661, 591, 318, 105, 21, 1;
616, 1242, 1199, 704, 266, 62, 7;
MAPLE
G:=(1-z)/(1-2*z-z^2*t+z^3*t+z^2-z^3):Gser:=simplify(series(G, z=0, 18)): P[0]:=1: for n from 1 to 16 do P[n]:=coeff(Gser, z^n) od: for n from 0 to 16 do seq(coeff(t*P[n], t^k), k=1..1+floor(n/2)) od; # yields sequence in triangular form
MATHEMATICA
nn=15; f[list_]:=Select[list, #>0&]; Map[f, CoefficientList[Series[1/(1-(x/(1-x)-x^2+y x^2)), {x, 0, nn}], {x, y}]]//Grid (* Geoffrey Critzer, Nov 05 2012 *)
CROSSREFS
Sequence in context: A084896 A011388 A349474 * A166284 A098086 A332887
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Apr 07 2005
STATUS
approved