login
A105100
Sum of ordered 3 prime sided prime triangles.
2
41, 156, 304, 462, 630, 834, 1020, 1214, 1420, 1618, 1824, 2076, 2288, 2514, 2712, 2926, 3198, 3460, 3656, 3874, 4086, 4370, 4598, 4888, 5100, 5346, 5626, 5886, 6126, 6332, 6580, 6836, 7146, 7386, 7678, 7848, 8208, 8560, 8762, 8962, 9258, 9498, 9696
OFFSET
1,1
COMMENTS
An ordered 3 prime sided prime triangle is 6 consecutive primes arranged in an equilateral triangle of the form
...........p(6n-5)
.....p(6n-4).....p(6n-3)
.p(6n-2)...p(6n-1)......p(6n)
LINKS
EXAMPLE
The first 3 prime sided prime triangle
2
3 5
7 11 13
adds up to 41, the first entry.
MATHEMATICA
Total/@Partition[Prime[Range[300]], 6] (* Harvey P. Dale, Apr 30 2022 *)
PROG
(PARI) sumtri3x3(n) = { local(x, j, s); forstep(x=1, n, 6, s = prime(x)+prime(x+1)+prime(x+2)+prime(x+3)+prime(x+4)+prime(x+5); print1(s", ") ) }
CROSSREFS
Sequence in context: A259835 A082252 A221811 * A141988 A347075 A158602
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Apr 07 2005
STATUS
approved