This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105094 Expansion of 8 * (eta(q^2) / eta(q)^2)^8 in powers of q. 1
 8, 128, 1152, 7680, 42112, 200448, 855552, 3345408, 12166272, 41609856, 134973184, 418023936, 1242729984, 3561814784, 9877810176, 26587137024, 69636039808, 177877244160, 443991342720, 1084762764800, 2598075516672 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Borcherds, Richard E., Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998), 491-562. FORMULA Expansion of 8 / phi(-q)^8 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Jun 08 2012 a(n) ~ exp(2*Pi*sqrt(2*n)) / (2^(15/4) * n^(11/4)). - Vaclav Kotesovec, Nov 14 2015 EXAMPLE 8 + 128*q + 1152*q^2 + 7680*q^3 + 42112*q^4 + 200448*q^5 + 855552*q^6 + ... MAPLE gf:=8*product((1-q^(2*n))^8, n=1..100)/product((1-q^n)^16, n=1..100): s:=series(gf, q, 100): for k from 0 to 40 do printf(`%d, `, coeff(s, q, k)) od: # James A. Sellers, Apr 09 2005 MATHEMATICA QP = QPochhammer; s = 8*(QP[q^2]/QP[q]^2)^8 + O[q]^30; CoefficientList[s, q] (* Jean-François Alcover, Nov 14 2015 *) PROG (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 8 * eta(x^2 + A)^8 / eta(x + A)^16, n))} /* Michael Somos, Apr 09 2005 */ CROSSREFS Sequence in context: A238651 A291849 A061549 * A208711 A242355 A036294 Adjacent sequences:  A105091 A105092 A105093 * A105095 A105096 A105097 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Apr 07 2005 EXTENSIONS More terms from Michael Somos, Apr 07 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.