login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105094 Expansion of 8 * (eta(q^2) / eta(q)^2)^8 in powers of q. 1
8, 128, 1152, 7680, 42112, 200448, 855552, 3345408, 12166272, 41609856, 134973184, 418023936, 1242729984, 3561814784, 9877810176, 26587137024, 69636039808, 177877244160, 443991342720, 1084762764800, 2598075516672 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Borcherds, Richard E., Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998), 491-562.

FORMULA

Expansion of 8 / phi(-q)^8 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Jun 08 2012

a(n) ~ exp(2*Pi*sqrt(2*n)) / (2^(15/4) * n^(11/4)). - Vaclav Kotesovec, Nov 14 2015

EXAMPLE

8 + 128*q + 1152*q^2 + 7680*q^3 + 42112*q^4 + 200448*q^5 + 855552*q^6 + ...

MAPLE

gf:=8*product((1-q^(2*n))^8, n=1..100)/product((1-q^n)^16, n=1..100): s:=series(gf, q, 100): for k from 0 to 40 do printf(`%d, `, coeff(s, q, k)) od: # James A. Sellers, Apr 09 2005

MATHEMATICA

QP = QPochhammer; s = 8*(QP[q^2]/QP[q]^2)^8 + O[q]^30; CoefficientList[s, q] (* Jean-Fran├žois Alcover, Nov 14 2015 *)

PROG

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 8 * eta(x^2 + A)^8 / eta(x + A)^16, n))} /* Michael Somos, Apr 09 2005 */

CROSSREFS

Sequence in context: A238651 A291849 A061549 * A208711 A242355 A036294

Adjacent sequences:  A105091 A105092 A105093 * A105095 A105096 A105097

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Apr 07 2005

EXTENSIONS

More terms from Michael Somos, Apr 07 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 13:46 EST 2017. Contains 295876 sequences.