

A105071


Primes in the triangle defined by T(0,c)=1, T(1,c)=c, T(r,1)=1 and T(r,c) = T(r,c1)+ c*(r1)!.


0



3, 5, 11, 13, 31, 241, 337, 601, 6481, 14401, 19441, 45361, 100801, 176401, 1088641, 18144001, 32659201, 50803201, 72576001, 199584001, 958003201, 1077753601, 2155507201, 2395008001, 2594592001, 56043187201, 124540416001, 647610163201
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS

Table of n, a(n) for n=0..27.


EXAMPLE

The host triangle T(r,c), defined recursively, starts in row r=0 with columns 1<=c<=r as:
1;
1,3;
1,5,11;
1,13,31,55;
1,49,121,217,337;
1,241,601,1081,1681,2401;'
...
The primes in the triangle enter the sequence, sorted in natural order.  R. J. Mathar, Sep 11 2011


MATHEMATICA

a[0, 0] = 1; a[1, 0] = 1; a[n_, 1] := a[n, 1] = n; a[1, m_] := a[1, m] = 1 a[n_, m_] := a[n, m] = a[n  1, m] + (m  1)!*n; aa = Delete[Union[Flatten[Table[Table[If[PrimeQ[a[n, m]] == True, a[n, m], 0], {n, 1, m}], {m, 0, 20}]]], 1]


CROSSREFS

Sequence in context: A216553 A250298 A260224 * A089251 A147568 A006794
Adjacent sequences: A105068 A105069 A105070 * A105072 A105073 A105074


KEYWORD

nonn


AUTHOR

Roger L. Bagula, Apr 05 2005


STATUS

approved



