

A105056


Triangle read by rows, based on the morphism f: 1>2, 2>3, 3>4, 4>{4,4,7,5}, 5>6, 6>7, 7>8, 8>{8,8,3,1}. First row is 1. If current row is a,b,c,..., then the next row is a,b,c,...,f(a),f(b),f(c),...


1



1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 4, 4, 7, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 4, 4, 7, 5, 2, 3, 3, 4, 3, 4, 4, 4, 4, 7, 5, 3, 4, 4, 4, 4, 7, 5, 4, 4, 4, 7, 5, 4, 4, 7, 5, 4, 4, 7, 5, 4, 4, 7, 5, 8, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

This sequence is the next level of substitution suggested in section 6 of the Kenyon paper. A tile exists at this level as well.


LINKS

Table of n, a(n) for n=0..104.
Richard Kenyon, The Construction of SelfSimilar Tilings


MATHEMATICA

s[n_] := n /. {1 > 2, 2 > 3, 3 > 4, 4 > {4, 4, 7, 5}, 5 > 6, 6 > 7, 7 > 8, 8 > {8, 8, 3, 1}}; t[a_] := Join[a, Flatten[s /@ a]]; Flatten[ NestList[t, {1}, 6]]


CROSSREFS

Cf. A000120, A073058.
Sequence in context: A105112 A105113 A207328 * A105061 A105164 A000120
Adjacent sequences: A105053 A105054 A105055 * A105057 A105058 A105059


KEYWORD

nonn,tabf


AUTHOR

Roger L. Bagula, Apr 04 2005


STATUS

approved



