

A105020


Array read by antidiagonals: row n (n >= 0) contains the numbers m^2n^2, m >= n+1.


0



1, 3, 4, 5, 8, 9, 7, 12, 15, 16, 9, 16, 21, 24, 25, 11, 20, 27, 32, 35, 36, 13, 24, 33, 40, 45, 48, 49, 15, 28, 39, 48, 55, 60, 63, 64, 17, 32, 45, 56, 65, 72, 77, 80, 81, 19, 36, 51, 64, 75, 84, 91, 96, 99, 100, 21, 40, 57, 72, 85, 96, 105, 112, 117, 120, 121, 23, 44, 63, 80
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

A "Goldbach Conjecture" for this sequence: when there are n terms between consecutive odd integers (2n+1) and (2n+3) for n>0, at least one will be the product of 2 primes (not necessarily distinct). Example: n=3 for consecutive odd integers a(7)=7 and a(11)=9 and of the 3 sequence entries a(8)=12, a(9)=15 and a(10)=16 between them, one is the product of 2 primes a(9)=15=3*5.  Michael Hiebl, Jul 15 2007
A024352 gives distinct values in the array, minus the first row (1, 4, 9, 16, etc.). a(n) gives all solutions to the equation x^2 + xy = n, with y mod 2 = 0, x > 0, y >= 0.  Andrew Plewe, Oct 19 2007
Alternatively, triangular sequence of coefficients of Dynkin diagram weights for the Cartan groups C_n: t(n,m)=m*(2*n  m). Row sums are A002412.  Roger L. Bagula, Aug 05 2008


REFERENCES

R. N. Cahn, SemiSimple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0486449998, p. 139.


LINKS

Table of n, a(n) for n=0..69.


EXAMPLE

Array begins:
1 4 9 16 25 36 49 64 81 100 ...
3 8 15 24 35 48 63 80 99 120 ...
5 12 21 32 45 60 77 96 117 140 ...
7 16 27 40 55 72 91 112 135 160 ...
9 20 33 48 65 84 105 128 153 180 ...
...
Triangle begins:
{1},
{3, 4},
{5, 8, 9},
{7, 12, 15, 16},
{9, 16, 21, 24, 25},
{11, 20, 27, 32, 35, 36},
{13, 24, 33, 40, 45, 48, 49},
{15, 28, 39, 48, 55, 60, 63, 64},
{17, 32, 45, 56, 65, 72, 77, 80, 81},
{19, 36, 51, 64, 75, 84, 91, 96, 99, 100}


MATHEMATICA

t[n_, m_] := (n^2  m^2); Flatten[ Table[ t[i, j], {i, 12}, {j, i  1, 0, 1}]] (* Robert G. Wilson v, Jul 11 2005 *)
(* to view table *) Table[t[i, j], {j, 0, 6}, {i, j + 1, 10}] // TableForm
Clear[T, n, m, a] T[n_, m_] = m*(2*n  m ); a = Table[Table[T[n, m], {m, 1, n}], {n, 1, 10}]; Flatten[a] (* Roger L. Bagula, Aug 05 2008 *)


CROSSREFS

Rows give A000290, A005563, A028347, A028560, A028566, A098603, A098847, A098848, A098849, A098850.
Columns give A005408, A008586, A016945, A008590, A017329, A008594, A008598, A008602, A008606, A000567.
Diagonals give A033428, A045944, A067725.
Sequence in context: A215497 A092997 A021747 * A112594 A188003 A120519
Adjacent sequences: A105017 A105018 A105019 * A105021 A105022 A105023


KEYWORD

nonn,tabl,easy


AUTHOR

Andrew Plewe and Franklin T. AdamsWatters, Jul 11 2005


EXTENSIONS

More terms from Robert G. Wilson v, Jul 11 2005


STATUS

approved



