login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primes from merging of 10 successive digits in decimal expansion of the Euler-Mascheroni constant.
3

%I #26 Feb 22 2023 05:35:30

%S 7215664901,1566490153,3286060651,6060651209,9008240243,4310421593,

%T 2159335939,9235988057,8486772677,8070824809,2836224173,3622417399,

%U 3997644923,2582470949,6008735203,3151776611,5015079847,7400299213,3139925401,3754139549,7984234877

%N Primes from merging of 10 successive digits in decimal expansion of the Euler-Mascheroni constant.

%C Leading zeros are not permitted, so each term is 10 digits in length. - _Harvey P. Dale_, Oct 30 2011

%C See A198784 for the variant without this restriction.-- The original version read (1566490153, 1290642131, 1386514643, 1851726733, 1383679133, 1706757499, 1072945781, 1015442651, 1403043203, 1100525291, 1332985747, 1866475913, 1834810931, 1887149587, 1197399197, 1956311131, 1449885007, 2137384231, ...). These terms are obtained when using signed 32-bit integers, i.e., take the 10-digit strings modulo 2^32, and select the primes between 10^9 and 2^31. - _M. F. Hasler_, Nov 01 2014

%H Vincenzo Librandi, <a href="/A104944/b104944.txt">Table of n, a(n) for n = 1..1000</a>

%H Jon Borwein, <a href="https://web.archive.org/web/20060212094503/http://www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/chap35.html">170,000 digits of Gamma</a> [Wayback Machine copy]

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Euler-MascheroniConstant.html">Euler-Mascheroni Constant</a>.

%t egp[len_]:=Module[{egterms=FromDigits/@Partition[RealDigits[EulerGamma, 10, 1000][[1]],len,1]},Select[egterms,IntegerLength[#]==len&&PrimeQ[#]&]];egp[10] (* _Harvey P. Dale_, Oct 30 2011 *)

%o (PARI) list_A104944(x=Euler, m=10)=m=10^m; for(k=1, default(realprecision), isprime(p=x\.1^k%m)&&p*10>m&&print1(p", ")) \\ The optional arguments can be used to produce other sequences of this series (cf. Crossrefs). Use e.g. \p999 to set precision to 999 digits. - _M. F. Hasler_, Nov 01 2014

%Y Cf. A198776, A198777, A198778, A198779, A198780, A198781, A198782, A198783, A198784.

%Y See also, for e: A104843, A104844, A104845, A104846, A104847, A104848, A104849, A104850, A104851; for Pi: A104824, A104825, A104826, A198170, A198171, A198172, A198173, A198175; for sqrt(2): A198161, A198162, A198163, A198164, A198165, A198166, A198167, A198168, A198169; for the golden ratio phi = (sqrt(5)-1)/2: A103773, A103789, A103793, A103808, A103809, A103810, A103811, A103812, A198177.

%K nonn,base

%O 1,1

%A Andrew G. West (WestA(AT)wlu.edu), Mar 29 2005

%E Corrected and extended by _Harvey P. Dale_, Oct 30 2011