login
A104944
Primes from merging of 10 successive digits in decimal expansion of the Euler-Mascheroni constant.
3
7215664901, 1566490153, 3286060651, 6060651209, 9008240243, 4310421593, 2159335939, 9235988057, 8486772677, 8070824809, 2836224173, 3622417399, 3997644923, 2582470949, 6008735203, 3151776611, 5015079847, 7400299213, 3139925401, 3754139549, 7984234877
OFFSET
1,1
COMMENTS
Leading zeros are not permitted, so each term is 10 digits in length. - Harvey P. Dale, Oct 30 2011
See A198784 for the variant without this restriction.-- The original version read (1566490153, 1290642131, 1386514643, 1851726733, 1383679133, 1706757499, 1072945781, 1015442651, 1403043203, 1100525291, 1332985747, 1866475913, 1834810931, 1887149587, 1197399197, 1956311131, 1449885007, 2137384231, ...). These terms are obtained when using signed 32-bit integers, i.e., take the 10-digit strings modulo 2^32, and select the primes between 10^9 and 2^31. - M. F. Hasler, Nov 01 2014
LINKS
Jon Borwein, 170,000 digits of Gamma [Wayback Machine copy]
Eric Weisstein's World of Mathematics, Euler-Mascheroni Constant.
MATHEMATICA
egp[len_]:=Module[{egterms=FromDigits/@Partition[RealDigits[EulerGamma, 10, 1000][[1]], len, 1]}, Select[egterms, IntegerLength[#]==len&&PrimeQ[#]&]]; egp[10] (* Harvey P. Dale, Oct 30 2011 *)
PROG
(PARI) list_A104944(x=Euler, m=10)=m=10^m; for(k=1, default(realprecision), isprime(p=x\.1^k%m)&&p*10>m&&print1(p", ")) \\ The optional arguments can be used to produce other sequences of this series (cf. Crossrefs). Use e.g. \p999 to set precision to 999 digits. - M. F. Hasler, Nov 01 2014
KEYWORD
nonn,base
AUTHOR
Andrew G. West (WestA(AT)wlu.edu), Mar 29 2005
EXTENSIONS
Corrected and extended by Harvey P. Dale, Oct 30 2011
STATUS
approved