|
|
A104944
|
|
Primes from merging of 10 successive digits in decimal expansion of the Euler-Mascheroni constant.
|
|
3
|
|
|
7215664901, 1566490153, 3286060651, 6060651209, 9008240243, 4310421593, 2159335939, 9235988057, 8486772677, 8070824809, 2836224173, 3622417399, 3997644923, 2582470949, 6008735203, 3151776611, 5015079847, 7400299213, 3139925401, 3754139549, 7984234877
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Leading zeros are not permitted, so each term is 10 digits in length. - Harvey P. Dale, Oct 30 2011
See A198784 for the variant without this restriction.-- The original version read (1566490153, 1290642131, 1386514643, 1851726733, 1383679133, 1706757499, 1072945781, 1015442651, 1403043203, 1100525291, 1332985747, 1866475913, 1834810931, 1887149587, 1197399197, 1956311131, 1449885007, 2137384231, ...). These terms are obtained when using signed 32-bit integers, i.e., take the 10-digit strings modulo 2^32, and select the primes between 10^9 and 2^31. - M. F. Hasler, Nov 01 2014
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Euler-Mascheroni Constant as explained at MathWorld.com.
The first 170,000 digits of the Euler Constant as calculated by Jon Borwein at WorldWideSchool.org.
|
|
MATHEMATICA
|
egp[len_]:=Module[{egterms=FromDigits/@Partition[RealDigits[EulerGamma, 10, 1000][[1]], len, 1]}, Select[egterms, IntegerLength[#]==len&&PrimeQ[#]&]]; egp[10] (* Harvey P. Dale, Oct 30 2011 *)
|
|
PROG
|
(PARI) list_A104944(x=Euler, m=10)=m=10^m; for(k=1, default(realprecision), isprime(p=x\.1^k%m)&&p*10>m&&print1(p", ")) \\ The optional arguments can be used to produce other sequences of this series (cf. Crossrefs). Use e.g. \p999 to set precision to 999 digits. - M. F. Hasler, Nov 01 2014
|
|
CROSSREFS
|
Cf. A198776, A198777, A198778, A198779, A198780, A198781, A198782, A198783, A198784.
See also, for e: A104843, A104844, A104845, A104846, A104847, A104848, A104849, A104850, A104851; for Pi: A104824, A104825, A104826, A198170, A198171, A198172, A198173, A198175; for sqrt(2): A198161, A198162, A198163, A198164, A198165, A198166, A198167, A198168, A198169; for the golden ratio phi = (sqrt(5)-1)/2: A103773, A103789, A103793, A103808, A103809, A103810, A103811, A103812, A198177.
Sequence in context: A216867 A095926 A198784 * A257899 A199632 A104851
Adjacent sequences: A104941 A104942 A104943 * A104945 A104946 A104947
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Andrew G. West (WestA(AT)wlu.edu), Mar 29 2005
|
|
EXTENSIONS
|
Corrected and extended by Harvey P. Dale, Oct 30 2011
|
|
STATUS
|
approved
|
|
|
|