login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104777 Integer squares congruent to 1 mod 6. 5
1, 25, 49, 121, 169, 289, 361, 529, 625, 841, 961, 1225, 1369, 1681, 1849, 2209, 2401, 2809, 3025, 3481, 3721, 4225, 4489, 5041, 5329, 5929, 6241, 6889, 7225, 7921, 8281, 9025, 9409, 10201, 10609, 11449, 11881, 12769, 13225, 14161, 14641, 15625, 16129 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Exponents of powers of q in expansion of eta(q^24).

A033683(a(n)) = 1.

Odd squares not divisible by 3. - Reinhard Zumkeller, Nov 14 2015

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1)

FORMULA

G.f. ( -1-24*x-22*x^2-24*x^3-x^4 ) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Feb 20 2011

a(n)=A007310(n)^2=1+24*A001318(n-1).

a(n) = 9*n^2 - 9*n + 5/2 + (-1)^n * (3*n - 3/2).  a(n+4) = 2*a(n+2) - a(n) + 72. - Robert Israel, Dec 12 2014

EXAMPLE

eta(q^24) = q - q^25 - q^49 + q^121 + q^169 - q^289 - q^361 + ...

MAPLE

seq(9*(n-1/2)^2 + 1/4 + (-1)^n * (3*n - 3/2), n = 1 .. 100); # Robert Israel, Dec 12 2014

PROG

(PARI) {a(n) = (3*n - 1 - n%2)^2};

(Haskell)

a104777 = (^ 2) . a007310  -- Reinhard Zumkeller, Nov 14 2015

CROSSREFS

Cf. A007310, A001318.

Sequence in context: A110013 A109861 A106564 * A131706 A110015 A110586

Adjacent sequences:  A104774 A104775 A104776 * A104778 A104779 A104780

KEYWORD

nonn

AUTHOR

Michael Somos, Mar 24 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 17:24 EST 2016. Contains 278682 sequences.