OFFSET
0,2
COMMENTS
Binomial transform is A033113.
Let b(n) = binomial(n-1, (n-1)/2)*(1-(-1)^n)/2 + binomial(n, n/2)*(1+(-1)^n)/2. Then a(n) = Sum_{k=0..n} b(k)*b(n-k).
If a(1)=2 is dropped, sequence becomes identical to A084568 (Proof immediate by standard manipulation of the two generating functions). - R. J. Mathar, May 19 2008
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,4).
FORMULA
a(n) = (9*2^n + (-2)^n - 2*0^n)/8.
MATHEMATICA
CoefficientList[Series[(1+x)^2/(1-4x^2), {x, 0, 40}], x] (* or *) LinearRecurrence[{0, 4}, {1, 2, 5}, 40] (* Harvey P. Dale, Dec 05 2015 *)
PROG
(PARI) vector(40, n, n--; (9*2^n +(-2)^n -2*0^n)/8) \\ G. C. Greubel, Jul 14 2019
(Magma) [1] cat [9*2^(n-3) -(-2)^(n-3): n in [1..40]]; // G. C. Greubel, Jul 14 2019
(Sage) [1]+[9*2^(n-3) -(-2)^(n-3) for n in (1..40)] # G. C. Greubel, Jul 14 2019
(GAP) Concatenation([1], List([1..40], n-> 9*2^(n-3) -(-2)^(n-3))); # G. C. Greubel, Jul 14 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 20 2005
STATUS
approved