login
Triangle T(n,k) = (2k-3+4n)*(k-1-n)*(k-2-n)/6, 1<=k<=n.
2

%I #8 Aug 08 2015 21:32:30

%S 1,7,3,22,13,5,50,34,19,7,95,70,46,25,9,161,125,90,58,31,11,252,203,

%T 155,110,70,37,13,372,308,245,185,130,82,43,15,525,444,364,287,215,

%U 150,94,49,17,715,615,516,420,329,245,170,106,55,19,946,825,705,588,476,371,275,190,118,61,21

%N Triangle T(n,k) = (2k-3+4n)*(k-1-n)*(k-2-n)/6, 1<=k<=n.

%C The triangle is created by the matrix product A158405 * A004736, regarding both as infinite lower triangular matrices, rest of the terms filled in with zeros.

%C Apparently, row n contains the initial terms of row 2n-2 of A177877. - _R. J. Mathar_, Aug 31 2011

%e First few rows are:

%e 1;

%e 7, 3;

%e 22, 13, 5;

%e 50, 34, 19, 7;

%e 95, 70, 46, 25, 9;

%e ...

%p A104716 := proc(n,k) (2*k-3+4*n)*(k-1-n)*(k-2-n)/6 ; end proc:

%p seq(seq(A104716(n,k),k=1..n),n=1..15) ; # _R. J. Mathar_, Aug 31 2011

%Y Cf. A104715, A002419 (row sums).

%K nonn,tabl,easy

%O 1,2

%A _Gary W. Adamson_, Mar 20 2005

%E Closed-form definition by _R. J. Mathar_, Aug 31 2011