login
Numbers n such that in n^3, number of odd digits is less than number of even digits.
4

%I #11 Aug 14 2018 21:04:31

%S 2,4,6,10,14,16,20,22,24,29,30,32,35,36,38,40,41,42,44,50,52,60,61,62,

%T 63,64,65,66,70,74,80,86,88,90,92,94,96,100,102,104,107,112,113,114,

%U 116,118,120,122,123,124,126,127,129,130,131,132,134,135

%N Numbers n such that in n^3, number of odd digits is less than number of even digits.

%C Numbers n such that in n^3, number of odd digits equals the number of even digits A104641. Numbers n such that in n^3, number of odd digits is larger than number of even digits A104693; rearrangement of positive integers according to number of odd and even digits in n^3 A104694, A104695; number of even digits in n^3 A104639, number of odd digits in n^3 A104640.

%H G. C. Greubel, <a href="/A104692/b104692.txt">Table of n, a(n) for n = 1..10000</a>

%t EvedQ[n_]:= Module[{idn3 = IntegerDigits[n^3]}, Count[idn3, _?OddQ] < Count[idn3, _?EvenQ]]; Select[Range[2000], EvedQ] (* _G. C. Greubel_, Aug 14 2018 *)

%o (PARI) isok(n) = my(d = digits(n^3)); sum(i=1, #d, d[i] % 2) < sum(i=1, #d, 1 - (d[i] % 2)); \\ _Michel Marcus_, Oct 05 2013

%Y Cf. A104639, A104640, A104641, A104693, A104694, A104695.

%K easy,nonn,base

%O 1,1

%A _Zak Seidov_, Mar 18 2005

%E More terms from _Michel Marcus_, Oct 05 2013