

A104692


Numbers n such that in n^3, number of odd digits is less than number of even digits.


4



2, 4, 6, 10, 14, 16, 20, 22, 24, 29, 30, 32, 35, 36, 38, 40, 41, 42, 44, 50, 52, 60, 61, 62, 63, 64, 65, 66, 70, 74, 80, 86, 88, 90, 92, 94, 96, 100, 102, 104, 107, 112, 113, 114, 116, 118, 120, 122, 123, 124, 126, 127, 129, 130, 131, 132, 134, 135
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Numbers n such that in n^3, number of odd digits equals the number of even digits A104641. Numbers n such that in n^3, number of odd digits is larger than number of even digits A104693; rearrangement of positive integers according to number of odd and even digits in n^3 A104694, A104695; number of even digits in n^3 A104639, number of odd digits in n^3 A104640.


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000


MATHEMATICA

EvedQ[n_]:= Module[{idn3 = IntegerDigits[n^3]}, Count[idn3, _?OddQ] < Count[idn3, _?EvenQ]]; Select[Range[2000], EvedQ] (* G. C. Greubel, Aug 14 2018 *)


PROG

(PARI) isok(n) = my(d = digits(n^3)); sum(i=1, #d, d[i] % 2) < sum(i=1, #d, 1  (d[i] % 2)); \\ Michel Marcus, Oct 05 2013


CROSSREFS

Cf. A104639, A104640, A104641, A104693, A104694, A104695.
Sequence in context: A280862 A213475 A075574 * A066755 A089238 A005574
Adjacent sequences: A104689 A104690 A104691 * A104693 A104694 A104695


KEYWORD

easy,nonn,base


AUTHOR

Zak Seidov, Mar 18 2005


EXTENSIONS

More terms from Michel Marcus, Oct 05 2013


STATUS

approved



